

Superposition d'ondes lumineuses

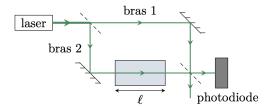
Applications directes du cours

- 1 Soit les deux signaux : $s_1(t) = A_1 \cos(\omega t + \varphi_1)$ et $s_2(t) = A_2 \cos(\omega t + \varphi_2)$.
 - 1. Déterminer l'amplitude A du signal $s(t)=s_1(t)+s_2(t)$ à l'aide de la méthode de Fresnel.
 - 2. Supposons dans le cas précédent $A_1 = A_2$. Calculer l'amplitude résultante A dans ce cas. Retrouver ce résultat de façon analytique à l'aide de formules trigonométriques.
- On éclaire un réseau ayant 500 traits par millimètre par un faisceau parallèle d'incidence normale ($\theta_0 = 0$) et de longueur d'onde $\lambda_0 = 600$ nm. Combien de pics de diffraction peut-on observer au maximum?

$$R\acute{e}ponses: \boxed{1}\ A^2 = A_1^2 + A_2^2 + 2A_1A_2\cos(\varphi_2 - \varphi_1),\ A = 2A_1\cos\left(\frac{\varphi_2 - \varphi_1}{2}\right);$$

Exercices

1. Film de savon

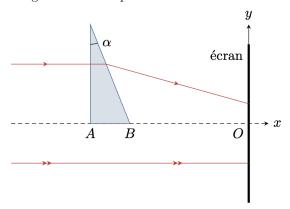

Les longueurs d'onde extrêmes du spectre visible sont 400 nm et 800 nm. À quelles couleurs correspondent- elles?

Un film de savon peut localement être considéré comme une lame à faces parallèles constituée d'eau d'indice n = 1, 33. Ce film est éclairé sous incidence quasi-normale par une source lumière blanche. La lumière subit de multiples réflexions à l'intérieur du film.

Envisager un film d'épaisseur $e=2~\mu\mathrm{m}$ et calculer les longueurs d'onde pour lesquelles on peut observer des interférences constructives en réflexion sur le film (aide : exprimer la différence de marche entre deux rayons réfléchis consécutifs).

2. Mesure de l'indice optique du méthane

Un interféromètre de Mach-Zehnder, schématisé ci-contre, est composé de deux miroirs et de deux lames semi-réfléchissantes, qui transmettent la moitié de l'intensité lumineuse et réfléchissent l'autre moitié. L'interféromètre est éclairé par un laser de longueur d'onde $\lambda=532$ nm, et une photodiode mesure l'intensité dans l'une des voies de sortie de l'interféromètre.



Une cuve fermée de longueur $\ell=10,0$ cm est placée dans l'un des bras. Cette cuve contient initialement de l'air, d'indice optique $n_{\rm air}$, progressivement remplacé par du méthane d'indice $n_{\rm m}>n_{\rm air}$. Au cours de l'opération, la photodiode permet d'observer le défilement de 32 franges.

- 1. Exprimer l'ordre d'interférence p_{air} lorsque la cuve est remplie d'air en fonction des longueurs géométriques L_1 et L_2 des bras de l'interféromètre.
- 2. Exprimer de même l'ordre $p_{\rm m}$ lorsque la cuve est remplie de méthane.
- 3. En déduire l'indice optique du méthane, sachant que $n_{\rm air} = 1 + 2,78 \cdot 10^{-4}$.

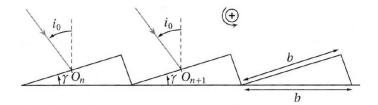
3. Interférences créées par un prisme

On dispose d'un prisme d'indice n et d'angle au sommet α éclairé par un faisceau de rayons parallèles monochromatique de longueur d'onde λ_0 . On observe la figure produite sur un écran placé derrière le prisme. Dans tout l'exercice, on se placera dans l'hypothèse d'un angle au sommet petit.

- 1. En pratique, comment peut-on réaliser un faisceau de rayons parallèles?
- 2. Exprimer l'angle de déviation des rayons en sortie du prisme.
- 3. Justifier que l'on peut considérer les ondes associées aux rayons déviés et aux rayons non déviés comme deux ondes planes.
- 4. Exprimer leur vecteur d'onde.
- 5. On pose $\varphi(A) = 0$. Exprimer la différence de phase entre les deux ondes au point B puis en tout point M de l'écran.
- 6. Qu'observe-t-on sur l'écran? Justifier.
- 7. En déduire une méthode de mesure de l'angle α .

4. Mesure du pas du réseau

On éclaire en incidence normale un réseau constitué de n traits par unité de longueur, avec une source monochromatique de longueur d'onde $\lambda = 630nm$. On place en sortie parallèlement au réseau une lentille f' = 25 cm. On observe l'ordre 1 à une distance d = 2, 4 cm du foyer image. Déterminer la valeur de n.


5. Minimum de déviation d'un réseau par transmission

Soit un réseau par transmission de pas a éclairé sous une incidence i.

- 1. Donner l'expression de la déviation D_k du rayon correspondant à la longueur d'onde λ dans l'ordre k.
- 2. Montrer que, si l'on fait tourner le réseau autour d'un axe parallèle aux traits, cette déviation passe par un minimum D_{kmin} .
- 3. On mesure $D_{kmin}=19^o$ pour $\lambda=550$ nm à l'ordre 3. En déduire le pas du réseau.

6. Réseau en échelettes

Les réseaux des spectromètres sont en général constitués de motifs en « échelettes » où les rayons sont réfléchis par une surface métallique. Les triangles de la figure sont isocèles de grand côté b, le plus petit angle est γ . On note O_n le milieu du grand côté de la n^e échelette. Le réseau est éclairé par une onde plane monochromatique de longueur d'onde λ sous un angle $i_0 > 0$ par rapport à la normale du support.

- 1. Donner une première raison pratique qui explique pourquoi les spectromètres contiennent plutôt un réseau en réflexion qu'en transmission?
- 2. On considère deux rayons parallèles réfléchis par deux échelettes voisines en faisant un angle i < 0 par rapport à la normale du support. Ils peuvent ensuite interférer par focalisation par une lentille convergente. Calculer la différence de marche entre ces deux rayons.
- 3. En déduire la formule des réseaux en réflexion correspondant à la condition d'interférence constructive.
- 4. On admet que l'intensité est maximum dans la direction donnée par la loi de Snell-Descartes de la réflexion. Donner son angle i_{max} en fonction de i_0 et γ .
- 5. On considère un réseau de 100 traits/mm éclairé sous $i_0=2\gamma$. Déterminer γ pour que le maximum de réflexion corresponde à l'ordre 5 pour $\lambda=550\,$ nm.
- 6. Pour un réseau en transmission, quel ordre correspond nécessairement au maximum d'intensité? En quoi un réseau en réflexion peut être plus intéressant dans ce cadre?