1. Optique

Opt2 Superposition d'ondes lumineuses

Superposition de deux ondes	Justifier et utiliser l'additivité des intensités.
quasi-monochromatiques non	
synchrones ou incohérentes entre	
elles.	
Superposition de deux ondes	Établir la formule de Fresnel.
quasi-monochromatiques	Identifier une situation de cohérence entre
cohérentes entre elles : formule de	deux ondes et utiliser la formule de Fresnel.
Fresnel.	
Superposition de N ondes quasi-	Expliquer qualitativement l'influence de N
monochromatiques cohérentes	sur l'intensité et la finesse des franges
entre elles, de même amplitude	brillantes observées.
et dont les phases sont en pro-	Établir, par le calcul, la condition d'in-
gression arithmétique dans le cas	terférences constructives et la demi-largeur
$N \gg 1$.	$2\pi/N$ des franges brillantes.
	Établir et utiliser la formule indiquant la di-
	rection des maxima d'intensité derrière un
	réseau de fentes rectilignes parallèles.

Opt3 Exemple de dispositif interférentiel par division du front d'onde : trous d'Young

Dispositif-modèle des trous	Définir, déterminer et utiliser l'ordre d'in-			
d'Young ponctuels dans un milieu	terférences			
non dispersif (source ponctuelle à				
grande distance finie; observation				
à grande distance finie).				
Champ d'interférences. Ordre				
d'interférences.				
Franges d'interférences.	Justifier la forme des franges observées sur			
	un écran éloigné parallèle au plan contenant			
	les trous d'Young.			
Du dispositif-modèle au dispositif réel.				
Fentes d'Young.	Identifier l'effet de la diffraction sur la figure			
Montage de Fraunhofer.	observée.			
	Expliquer l'intérêt pratique du dispositif des			
	fentes d'Young comparativement aux trous			
	d'Young.			
	Exprimer l'ordre d'interférences sur l'écran			
	dans le cas d'un dispositif des fentes d'Young			
	utilisé en configuration de Fraunhofer.			
Perte de contraste par	Utiliser un critère semi-quantitatif de			
élargissement spatial de la	brouillage des franges portant sur l'ordre			
source.	d'interférences pour interpréter des observa-			
	tions expérimentales.			

Perte d	e contrast	e pa	ar	Utiliser un critère semi-quantitatif de
élargisseme	nt spectral	de	a	brouillage des franges portant sur l'ordre
source.				d'interférences pour interpréter des observa-
				tions expérimentales.
				Relier la longueur de cohérence temporelle,
				la largeur spectrale et la longueur d'onde en
				ordres de grandeur.
Observation	ns en lumière	blanch	ıе	Déterminer les longueurs d'ondes des canne-
(blanc d'or	dre supérieur	, specti	e	lures.
cannelé).				