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I Modèle continu des fluides

1. La particule de fluide

Les différentes échelles :

Échelle macroscopique L Échelle mésoscopique ℓ Échelle microscopique λ

2. Approximation des milieux continus

Lorsque l’échelle mésoscopique est concevable, le fluide est étudié comme un milieu continu au sein duquel
les grandeurs varient continûment.

II Description d’un fluide en écoulement

1. Deux approches possibles

Deux approches différentes existent. Le point de vue de Lagrange consiste à s’intéresser à la trajectoire des
particules de fluide. Celui d’Euler se concentre sur l’évolution des propriétés du fluide en différents points et
au cours du temps.

a. La description lagrangienne

Joseph Louis de Lagrange, né à Turin en 1736 et mort à Paris en 1813, est un mathématicien, mécanicien et
astronome sarde naturalisé français.

Dans le formalisme lagrangien, on étudie le mouvement d’une particule de fluide F que l’on suit au cours
du temps.

On appelle trajectoire d’une particule de fluide la courbe décrite par la particule de fluide au cours de temps
dans le référentiel d’étude.
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b. La description eulérienne

Leonhard Euler, né à Bâle (Suisse) en 1707 et mort à Saint-Pétersbourg en 1783, est un mathématicien et
physicien suisse, qui passa la plus grande partie de sa vie dans l’Empire russe et en Allemagne.

En mécanique des fluides, la description eulérienne consiste à suivre en chaque point fixe de l’espace l’évolution
au cours du temps des grandeurs macroscopiques locales (masse volumique, vitesse...)

2. Lignes de courant et tubes de champ

On appelle ligne de courant une courbe tangente en chacun de ses points au champ des vitesses.

On appelle tube de courant toute surface formée de
lignes de courant s’appuyant sur un contour fermé.

https://fr.wikipedia.org/wiki/Ligne_de_courant

Exemple : on considère le champ de vitesse bidimen-
sionnel suivant :

−→v (x, y, t) = Axt−→ex −Byt2−→ey

avec A = 0, 2 s−2 et B = 0, 1 s−3.

On se place à l’instant t1 = 1 s.

Équation des lignes de champ :

dx

Axt1
= − dy

Byt21

Soit

yx
Bt1
A = cste

On considère une particule P1 qui se trouve à l’instant
t1 au point (2,2). On représente en diamants rouges sa
trajectoire entre t1 et t3 = 4 s.

La ligne de courant qui passe par la particule à l’instant

t1 a pour équation y = 2

√
2

x
.

À l’instant t2 = 2 s, les lignes de courant ont pour
équation :

y =
cste

x

Lignes de champ à t1 = 1 s

Lignes de champ à t2 = 2 s
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3. Dérivée particulaire d’un champ eulérien

a. Dérivée particulaire de la masse volumique (champ scalaire)

On cherche à exprimer la variation temporelle de la masse volumique d’une particule de fluide en fonction du
champ eulérien des masses volumiques µ(M, t).

Dµ

Dt
= lim

δt→0

µ(x+ vxδt, y + vyδt, z + vzδt, t+ δt)− µ(x, y, z, t)

δt�

�

�

�
Dµ

Dt
=

∂µ

∂t︸︷︷︸
dérivée locale

+ (−→v ·
−−→
grad )µ︸ ︷︷ ︸

dérivée convective

b. Accélération particulaire

−→a (M, t) = champ eulérien des accélérations,
−→
AF (t) = accélération de la particule de fluide F en M à l’instant t.

On a :
−→
AF (t) = −→a (M, t).�

�

�

�
D−→v
Dt

(M, t) =
∂v⃗(M, t)

∂t︸ ︷︷ ︸
accélération locale

+
(−→v (M, t) ·

−−→
grad

)−→v (M, t)︸ ︷︷ ︸
accélération convective

∂v⃗

∂t
= accélération locale(−→v ·
−−→
grad

)−→v = accélération convective

Remarque :
(−→v ·

−−→
grad

)−→v =
−−→
grad

v2

2
+

(−→
rot−→v

)
∧ −→v

Applications :
• Écoulement de cisaillement : soit un écoulement tel que −→v (M, t) = f(y, t)−→ux, avec f(y, t) une fonction

de y et du temps. Montrer que (−→v ·
−−→
grad )−→v =

−→
0 .

• −→v (x, y, t) = Axt−→ex −Bt2y−→ey
• −→v (x, y, t) = k(−x−→ux + (y + 2x)−→uy)

c. Dérivée particulaire

Soit g(M, t) = g(x, y, z, t), une grandeur intensive scalaire (ou vectorielle −→g (x, y, z, t)), définie en tout point

et à chaque instant. Soit F une particule de fluide qui se trouve à l’instant t en M :
−−→
OM(t) = −→r (t). À

l’instant t+ δt F se trouve en M ′ tel que
−−−→
OM ′ =

−−→
OM +

−→
VF (t)δt = −→r + d−→r avec

−→
VF (t) = −→v (M, t).

En suivant la particule de fluide entre t et t+ δt, g varie de g(−→r +
−→
dr, t+ δt)− g(−→r , t).

On appelle dérivée particulaire de g la grandeur :

Dg

Dt
= lim

δt→0

g(−→r +
−→
dr, t+ δt)− g(−→r , t)

δt
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�
�

�
�

Dg

Dt
=

∂g

∂t
+
(−→v ·

−−→
grad

)
g

On utilise la dérivée particulaire lorsqu’on veut calculer la variation d’une grandeur décrivant une particule
de fluide en fonction des champs eulériens décrivant le fluide.

Opérateur
(−→v ·

−−→
grad

)
:

En coordonnées cartésiennes, on a −→v = vx
−→u x + vy

−→u y + vz
−→u z et

−−→
grad =

∂

∂x
−→u x +

∂

∂y
−→u y +

∂

∂y
−→u z d’où

(−→v ·
−−→
grad ) =

(
vx

∂

∂x
+ vy

∂

∂y
+ vz

∂

∂z

)

III Conservation de la masse

1. Les débits

a. Le débit massique

Soit S une surface orientée. Le débit massique à travers S est la masse δm de fluide qui passe à travers S par
unité de temps : �

�
�
�Dm(S, t) = δm

dt

Dm(S, t) s’exprime en kg.s−1, c’est une grandeur algébrique.

b. Le débit volumique

Soit S une surface orientée. Le débit volumique à travers S est le volume δV de fluide qui passe à travers S
par unité de temps : �

�
�
�DV (S, t) =

δV

dt

2. Vecteur densité de courant de masse

On appelle vecteur densité de courant de masse le vecteur

−→
jm(M, t) = µ(M, t)−→v (M, t)

Le débit massique à travers un surface S est égal au flux du vecteur densité de courant de masse
−→
j m à travers

cette surface :

Dm(S, t) =
¨

M∈S

−→
jm(M, t) ·

−−→
dSM

Remarque : le débit volumique à travers une surface est le flux du champ des vitesses à travers cette surface.

Application : On considère l’écoulement unidimensionnel d’un gaz dans un tuyau cylindrique de diamètre
d = 2 cm. À travers une section du tuyau passe la masse M = 510 g de gaz en demi-heure. Quel est le débit
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massique ?
La masse volumique µg = 0, 75 kg.m−3 est supposée constante et uniforme. En déduire la vitesse d’écoulement
du gaz.

3. Équation de conservation de la masse

a. À 1 dimension

∂µ

∂t
(x, t) +

∂jm
∂x

(x, t) = 0

b. Généralisation

Équation de conservation de la masse ou équation de continuité :�
�

�
�

∂µ

∂t
+ div

−→
jm = 0

Or
−→
jm = µ−→v , div j⃗m = µdiv−→v + (−→v ·

−−→
grad )µ.

∂µ

∂t
+ divµ−→v = 0 ⇔ Dµ

Dt
+ µdiv−→v = 0

c. Interprétation

div−→v =
1

V

DV

Dt

avec V volume d’une particule de fluide que l’on suit.

4. Débit et conditions aux limites

IV Écoulements particuliers

1. Écoulement stationnaire

Un écoulement est stationnaire dans un référentiel d’étudeR si les champs eulériens du fluide sont indépendants
du temps. On a alors

∂

∂t
= 0

Cette propriété dépend du référentiel d’étude.

Exemple : sillage d’un bateau
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Dans le référentiel du bateau le sillage est station-
naire alors qu’il ne l’est pas dans le référentiel de
la rive.

Les propriétés
• Les lignes de courant ne varient pas au cours du temps.
• Les trajectoires des particules de fluide sont confondues avec les lignes de courant.
• Le vecteur densité de courant de masse est à flux conservatif.
• Le débit massique à travers toute surface fermée est nul.
• Le débit massique à travers toute section d’un tube de courant est constant.

2. Écoulement incompressible

a. Définition

Un fluide est en écoulement incompressible si les particules de fluide ont un volume constant au cours de leur
déplacement. On a alors �

�
�
�div−→v = 0 ou

Dµ

Dt
= 0

b. Écoulement ou fluide incompressible

Un fluide est dit incompressible si sa masse volumique est fixée et ne dépend pas de la pression. En règle
générale, les liquides peuvent en première approximation être considérés comme incompressibles : µ = cste.

On admet que les écoulements gazeux peuvent être assimilés à des écoulements incompressibles si la vitesse
du fluide en tout point est faible devant la vitesse de propagation du son dans ce même fluide.

c. Propriétés

Dans un écoulement incompressible la vitesse est à flux conservatif.
Le débit volumique à travers toute surface fermée est nul.
Le débit volumique à travers toute section d’un tube de courant est constant. Lorsque les lignes de courant
se resserrent, la vitesse du fluide augmente.
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3. Écoulement tourbillonnaire

a. Vecteur tourbillon

On appelle vecteur tourbillon d’un écoulement le vecteur :

−→
Ω =

1

2

−→
rot−→v

Remarque : div
−→
Ω = 0.

Le vecteur tourbillon décrit la rotation locale des particules de fluide.

Un écoulement est dit tourbillonnaire lorsque
−→
Ω ̸= −→

0 .

b. Exemples

4. Écoulement irrotationnel

a. Définition

Un écoulement est dit irrotationnel si le vecteur tourbillon est nul en tout point du fluide.

Cette propriété dépend du référentiel d’étude.

b. Écoulement potentiel

Un écoulement irrotationnel est également qualifié d’écoulement potentiel car il existe un potentiel scalaire
Φ(M, t) appelé potentiel des vitesse tel que :

−→v (M, t) =
−−→
gradΦ(M, t)

c. Écoulement irrotationnel incompressible

Écoulement irrotationnel :
−→
rot−→v = 2

−→
Ω =

−→
0 ⇒ −→v =

−−→
gradΦ.

Écoulement incompressible : div−→v = 0 ⇒ div (
−−→
gradΦ) = 0.

Dans un écoulement irrotationnel incompressible, le potentiel vitesse Φ obéit à l’équation de Laplace

∆Φ = 0

V Annexe

import numpy as np
import matp lo t l i b . pyplot as p l t

def v (x , y , t ) :
A = 0 .2
B = 0.1
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vx = A ∗ x ∗ t
vy = −B ∗ y ∗ t ∗∗2
return vx , vy

x0 = 2 .
y0 = 2 .

xcur = x0
ycur = y0
nt = 3000
xpos = np . z e ro s ( nt , dtype=f loat )
ypos = np . z e r o s l i k e ( xpos )
xarr = np . arange ( 0 . 5 , 8 . , 0 . 0 5 )
yarr1 = 2 .∗np . sq r t ( 2 . / xarr )
yarr2 = 2 .∗np . sq r t ( 4 . / xarr )
yarr3 = 2 .∗np . sq r t ( 8 . / xarr )
yarr4 = 2 .∗np . sq r t ( 1 . / xarr )
dt = 1 . e−3
for i t in range ( nt ) :

xpos [ i t ] = xcur
ypos [ i t ] = ycur
t = 1 . + f loat ( i t ) ∗ dt
vx , vy = v( xcur , ycur , t )
xnew = xcur + vx ∗ dt
ynew = ycur + vy ∗ dt
xcur = xnew
ycur = ynew

f i g = p l t . f i g u r e ( )
ax = f i g . add subplot (111)
ax . p l o t ( xarr , yarr1 )
ax . p l o t ( xarr , yarr2 )
ax . p l o t ( xarr , yarr3 )
ax . p l o t ( xarr , yarr4 )
ax . s c a t t e r ( xpos [ : : 2 0 ] , ypos [ : : 2 0 ] , marker=’d ’ , s=4, c=’ r ’ )
ax . s e t x l a b e l ( ”x” )
ax . s e t y l a b e l ( ”y” )
p l t . g r i d ( )
p l t . show ( )
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