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[Cinématique des fluides

I Modele continu des fluides

1. La particule de fluide

Les différentes échelles :

Echelle macroscopique L Echelle mésoscopique £ Echelle microscopique A

2. Approximation des milieux continus

Lorsque I’échelle mésoscopique est concevable, le fluide est étudié comme un milieu continu au sein duquel
les grandeurs varient contintiment.

II Description d’un fluide en écoulement

1. Deux approches possibles

Deux approches différentes existent. Le point de vue de Lagrange consiste a s’intéresser a la trajectoire des
particules de fluide. Celui d’Euler se concentre sur 1’évolution des propriétés du fluide en différents points et
au cours du temps.

a. La description lagrangienne

Joseph Louis de Lagrange, né a Turin en 1736 et mort a Paris en 1813, est un mathématicien, mécanicien et
astronome sarde naturalisé francais.

Dans le formalisme lagrangien, on étudie le mouvement d’une particule de fluide .% que 1’on suit au cours
du temps.

On appelle trajectoire d’une particule de fluide la courbe décrite par la particule de fluide au cours de temps
dans le référentiel d’étude.
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b. La description eulérienne

Leonhard Euler, né a Bale (Suisse) en 1707 et mort a Saint-Pétersbourg en 1783, est un mathématicien et
physicien suisse, qui passa la plus grande partie de sa vie dans I’Empire russe et en Allemagne.

En mécanique des fluides, la description eulérienne consiste & suivre en chaque point fixe de I’espace I’évolution
au cours du temps des grandeurs macroscopiques locales (masse volumique, vitesse...)

2. Lignes de courant et tubes de champ

On appelle ligne de courant une courbe tangente en chacun de ses points au champ des vitesses.

On appelle tube de courant toute surface formée de
lignes de courant s’appuyant sur un contour fermé.

Exemple : on considere le champ de vitesse bidimen-
sionnel suivant :

U (z,y,t) = Axte, — Byt’e,
avec A =0,2s52et B=0,1s"5.
On se place a l'instant t; = 1 s.

Equation des lignes de champ :

dx . dy
Azt Byt?
Soit
Bty
yxr A = cste

On considere une particule P; qui se trouve a I'instant
t1 au point (2,2). On représente en diamants rouges sa
trajectoire entre t; et t3 =4 s.

La ligne de courant qui passe par la particule a I'instant
2
t1 a pour équation y = 24/ —.
x
A Vinstant to = 2 s, les lignes de courant ont pour
équation :

cste
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3. Dérivée particulaire d’un champ eulérien
a. Dérivée particulaire de la masse volumique (champ scalaire)

On cherche a exprimer la variation temporelle de la masse volumique d’une particule de fluide en fonction du
champ eulérien des masses volumiques pu(M,t).

Du y p(x 4+ ve6t, y + vydt, 2 + v.6t, t + 6t) — p(x,y, 2, 1)

Dt sto0 5t

Du_ on
Dt ot
=~

dérivée locale

+ (T - grad)n
—

dérivée convective

b. Accélération particulaire

@ (M,t) = champ eulérien des accélérations,

N

7 (t) = accélération de la particule de fluide .# en M a l'instant ¢.
Ona Zy( t) =@ (M, ).

DYV 0v(M,t —
DV = 2OLY (7(M, ) - grad) (M, 1)
Dt ot
accélération locale accélération convective

817
— = accélération locale

(7 grad) U = accélération convective

2

Remarque : (7 gr?l)?: gr?i%—k (r_o%7) ATV

Applications :

e Ecoulement de cisaillement : soit un écoulement tel que o (M, t) = f(y,t)us, avec f(y,t) une fonction
% %
de y et du temps. Montrer que (7 - grad)v = 0.

o U(x,y,t) = Axte] — Bt’ye,

o U(z,y,1) = k(- $uz+(y+2w)@)

c. Dérivée particulaire

Soit g(M,t) = g(z,y, z,t), une grandeur intensive scalaire (ou vectorielle ?(m,y, z,t)), définie en tout point

l

et a chaque instant. Soit .# une particule de fluide qui s trouve a l'instant ¢ en I\ M : OM(t) = 7(t). A
l'instant ¢ + 6t .7 se trouve en M’ tel que OM' = OM + Vy( )ot :j +d7 avec V #(t) = U(M,1).
En suivant la particule de fluide entre ¢ et t + dt, g varie de g(7 + dr,t + 6t) — (7, 1).

On appelle dérivée particulaire de g la grandeur :

Dy _g(7 +drt+6t) —g(7,t)
—= = lim
Dt 5t—0 ot
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5= o+ (7 wmd)s

On utilise la dérivée particulaire lorsqu’on veut calculer la variation d’une grandeur décrivant une particule
de fluide en fonction des champs eulériens décrivant le fluide.

Opérateur (7 gr?i) :

— 0 0 0
En coordonnées cartésiennes, on a v = vmﬁx + vyﬁy + 0272 et grad = 8—73; + afﬁy + 8—73 d’ou
x Yy Yy

— 0 0 0
(V- grad) = (U‘Tﬁx + vya—y + UZ@Z)

IIT Conservation de la masse

1. Les débits
a. Le débit massique

Soit § une surface orientée. Le débit massique a travers S est la masse dm de fluide qui passe a travers S par
unité de temps :

om

D, (S,t) = s

1

m(S,t) s’exprime en kg.s™*, c’est une grandeur algébrique.

b. Le débit volumique

Soit S une surface orientée. Le débit volumique a travers S est le volume dV de fluide qui passe a travers S
par unité de temps :

%

Dy(S,t) = s

2. Vecteur densité de courant de masse

On appelle vecteur densité de courant de masse le vecteur

Tm(M, 1) = (M, )T (M, t)

Le débit massique a travers un surface S est égal au flux du vecteur densité de courant de masse j ,, & travers

cette surface :
A (S.1) // Jm(M. 1) - Sy,

MeS
Remarque : le débit volumique a travers une surface est le flux du champ des vitesses a travers cette surface.

Application : On considere I'écoulement unidimensionnel d’'un gaz dans un tuyau cylindrique de diameétre
d =2 cm. A travers une section du tuyau passe la masse M = 510 g de gaz en demi-heure. Quel est le débit
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massique ?
La masse volumique i, = 0,75 kg.m™> est supposée constante et uniforme. En déduire la vitesse d’écoulement
du gaz.

3. Equation de conservation de la masse

a. A 1 dimension

ou B
a(%t) + %(fﬂat) =0

b. Généralisation

Equation de conservation de la masse ou équation de continuité :

[‘z’:Jr div jo = 0

Oron> = p 0, divjm, = pdive + (V- gr?i),u.

ou .. B Dp  —
a—i—dwu?—o & E%—de?—o
c. Interprétation
1 DV
dive = ==
VYTV D

avec V volume d’une particule de fluide que I’on suit.

4. Débit et conditions aux limites
IV Ecoulements particuliers

1. Ecoulement stationnaire

Un écoulement est stationnaire dans un référentiel d’étude R si les champs eulériens du fluide sont indépendants
du temps. On a alors

0

EZO

Cette propriété dépend du référentiel d’étude.

Exemple : sillage d’un bateau
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Dans le référentiel du bateau le sillage est station-
naire alors qu’il ne ’est pas dans le référentiel de
la rive.

Les propriétés
e Les lignes de courant ne varient pas au cours du temps.
Les trajectoires des particules de fluide sont confondues avec les lignes de courant.
Le vecteur densité de courant de masse est a flux conservatif.
Le débit massique a travers toute surface fermée est nul.
Le débit massique a travers toute section d’un tube de courant est constant.

2. Ecoulement incompressible
a. Définition

Un fluide est en écoulement incompressible si les particules de fluide ont un volume constant au cours de leur
déplacement. On a alors

Dp
divd = =F =
v 0 ou Dr 0

b. Ecoulement ou fluide incompressible

Un fluide est dit incompressible si sa masse volumique est fixée et ne dépend pas de la pression. En regle
générale, les liquides peuvent en premieére approximation étre considérés comme incompressibles : y = cste.

On admet que les écoulements gazeux peuvent étre assimilés a des écoulements incompressibles si la vitesse
du fluide en tout point est faible devant la vitesse de propagation du son dans ce méme fluide.

c. Propriétés

Dans un écoulement incompressible la vitesse est a flux conservatif.

Le débit volumique a travers toute surface fermée est nul.

Le débit volumique a travers toute section d’un tube de courant est constant. Lorsque les lignes de courant
se resserrent, la vitesse du fluide augmente.
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3. FEcoulement tourbillonnaire
a. Vecteur tourbillon

On appelle vecteur tourbillon d’un écoulement le vecteur :

_>
Remarque : div 2 = 0.
Le vecteur tourbillon décrit la rotation locale des particules de fluide.

= =
Un écoulement est dit tourbillonnaire lorsque € # 0.

b. Exemples

4. Ecoulement irrotationnel

a. Définition

Un écoulement est dit irrotationnel si le vecteur tourbillon est nul en tout point du fluide.
Cette propriété dépend du référentiel d’étude.

b. Ecoulement potentiel

Un écoulement irrotationnel est également qualifié d’écoulement potentiel car il existe un potentiel scalaire
®(M,t) appelé potentiel des vitesse tel que :

U (M, t) = grad ®(M, t)

c. Ecoulement irrotationnel incompressible

: . . — — —

Ecoulement irrotationnel : rot ¥ = 26 = 0=7= grad ®.

: —

Ecoulement incompressible : div " =0 = div (grad ®) = 0.

Dans un écoulement irrotationnel incompressible, le potentiel vitesse ® obéit a ’équation de Laplace

AP =0

V Annexe

import numpy as np
import matplotlib.pyplot as plt
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v = A * x * ¢
vy = B % y % txx2
return vx, vy

x0 = 2.
y0 = 2.

xcur = x0
ycur = y0
nt = 3000
xpos = np.zeros( nt, dtype=float)
ypos = np.zeros_like (xpos)
xarr = np.arange (0.5, 8.,0.05)
yarrl = 2.xnp.sqrt (2./xarr
yarr2 = 2.xnp.sqrt (4./xarr
yarrd = 2.xnp.sqrt (8./xarr
yarrd = 2.xnp.sqrt (1./xarr
dt = 1.e—3
for it in range(nt):
xpos[it] = xcur
ypos[it] = ycur
t = 1. + float(it) = dt
vx, vy = v( xcur, ycur, t)
xnew = xcur + vx x dt
ynew = ycur + vy x dt
XCUr = Xnew
ycur = ynew

)
)
)
)

fig = plt.figure ()

ax = fig.add_subplot(111)
ax.plot (xarr ,yarrl)
ax.plot (xarr ,yarr2)
ax.plot (xarr,yarr3)
ax.plot (xarr ,yarr4)

ax.scatter (xpos[::20], ypos[::20], marker="d

ax.set_xlabel ("x”)
ax.set_ylabel ("y”)
plt.grid ()
plt .show ()

)

s=4,

C='T
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