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Étude d’un disque optique
numérique
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Première partie

Faire l’image d’une exoplanète

I Principe de la mesure sur un système équivalent

1. Le point source SA étant dans le plan focal objet de la lentille 1, le faisceau
émergent de la lentille est un faisceau parallèle dans la direction (SAO1).
Les surfaces d’onde sont des plans perpendiculaires au rayons après L1. On
construit les rayons issus de SA passant par T1 ou T2. On utilise le théorème
de Malus : (SAT1) = (SAI), ce qui permet d’obtenir

δsource = (SAT2)− (SAT1) = (SAI) + (IT2)− (SAT1) = (IT2) = a sin(
α

2
)

soit
�



�
	δsource =

aα

2
(cf. figure suivante)
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Note : le sens positif des angles est horaire.
2. On a

�� ��s1(t) = s0 cos(ωt− k(S1T1M)) et
�� ��s2(t) = s0 cos(ωt− k(S2T1M)) .

3. On a I(M) = k⟨s(M, t)⟩, où k est un coefficient de proportionnalité positif et
s(M, t) = s1(M, t) + s2(M, t).

On a donc I(M) = k⟨s21⟩+ 2k⟨s1s2⟩+ k⟨s22⟩.

On a, par ailleurs I0 = k
s20
2

, ce qui permet d’obtenir :

I(δ) = 2I0 + 4I0⟨cos(ωt− k(S1T1M)) cos(ωt− k(S1T2M))⟩
= 2I0 + 2I0⟨cos(2ωt− k(S1T1M)− k(S1T2M)) + cos(k(S1T2M)− k(S1T1M))⟩
= 2I0 (1 + cos [k ((S1T2M)− (S1T1M))])

On a donc
�� ��I(M) = 2I0 (1 + cos [k(δsource + delta)]) ce qui donne le résultat

demandé.
4. Les deux sources sont incohérentes, il n’y a donc pas d’interférence entre elles.

L’intensité totale est donc la somme des intensités dues aux sources SA et SB ;
l’intensité due à SB est simplement obtenue en remplaçant α par −α.

On obtient alors :

Id(δ) = 2I0

(
1 + cos

[
k
(aα

2
+ δ

)])
+ 2I0

(
1 + cos

[
k

(
−aα
2

+ δ

)])
= 4I0

(
1 + cos(kδ) cos

(
kaα

2

))
ce qui est le résultat cherché, avec Id,0 = 4I0.

5. On a :

Figure 1 – Gauche : Intensité pour un facteur de cohérence égal à 1 ; Droite :
intensité pour un facteur de cohérence nul.

6. Application numérique :
ka

2
=
πa

λ0
= 967
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7. L’énoncé n’indique pas d’incertitude sur a on peut donc considérer que celle-

ci est nulle. On a alors simplement, en notant β =
ka

2
=

πa

λ0
, et u(x)

l’incertitude-type sur x,
u(β)

β
=
u(λ0)

λ0
.

Soit

�



�
	u(β) =

β

λ0
u(λ0) = 45 .

8. On peut lire Imax = 112 u.a et Imin = 50 u.a, et donc
�� ��C = 0, 38 .

NB : La figure ne correspond pas à l’expression de la question 4., car on a
un phénomène de diffraction (par les fentes d’Young) qui se superpose aux
interférences, et conduit à un I0 dépendant de δ.

9. Cf. figure ??.

Figure 2 – Figure du document réponse, avec le point supplémentaire.
10. Il est possible de le faire via une méthode de Monte-Carlo : répéter l’ajuste-

ment avec des points pris au hasard dans la distribution de probabilité associée
à chaque point de mesure. On peut alors déterminer l’écart-type sur chaque
paramètre de la simulation.

NB : On se serait attendu a priori à C0 = 1, mais d’autres effets vont contri-
buer à diminuer le contraste, en premier lieu la largeur non-nulle des fentes

sources.

11. On a tan
α

2
=

d

2f ′1
, soit α =

d

f ′1
, et donc

�� ��d = αf ′1 = 508µm .

Comme l’incertitude sur f ′1 est négligée, on a par ailleurs�� ��u(d) = f ′1u(α) = 9µm

12. Dans ce cas chaque source donne une image à l’infini, inclinée de ±α/2, par la
lentille L1, puis des images dans le plan focal image, à des positions ±f ′2α/2.

La distance d′ entre les deux images sur le plan focal image vaut donc d′ =
f ′2α =

f ′
2

f ′
1
d.

On peut estimer d′ = 32µm. Pour estimer u(d′), le plus rigoureux est de dire
que les deux maxima sont estimées avec une tolérance de 2 µm (puisque les

points de mesure sont tous les 4 µm), et donc une incertitude-type de
2√
3
µm.

d′ est une différence entre ces deux mesures, les carrés des incertitudes-type

s’ajoutent, ce qui donnerait u(d′) =
√

2

3
2µm = 1, 6 µm.

On obtient alors
�



�
	d =

f ′
1

f ′
2
d′ = 457µm , et

�



�
	u(d) =

f ′
1

f ′
2
u(d′) = 23µm

Pour discuter de la compatibilité des deux résultats, on peut calculer l’écart

normalisé :
�



�
	EN = |d1−d2|√

u(d1)2+u(d2)2
= 2, 1 .

(où d1 et d2 correspondent aux deux évaluations de d)

La compatibilité des deux résultats est discutable. Le critère habituel est de
considérer que les résultats sont compatibles si EN < 2, mais, dans la mesure
où on est très proche de cette limite, obtenir un tel écart par hasard peut être
considéré comme improbable, mais pas impossible...
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II Interférences à deux télescopes

13. On a, en utilisant le théorème de Malus de la même façon qu’à la question 1.,
(A0T2)− (A0T1) = a

α

2
.

La différence de marche totale vaut donc
�



�
	δ = a

α

2
+ δr . La situation est donc

très similaire à celle de la question 1, à ceci près que la figure d’interférences
ne sera pas obtenue d’un coup, mais en modifiant la compensation de la ligne
à retard.

14.

�



�
	αres =

λ0
2a

= 2, 5.10−9rad

La résolution spatiale d, à un distance l, vaut
�� ��d = αresl = 2, 36.106km .

Cette distance correspond plus à la taille d’une étoile qu’à celle d’une planète.
On ne peut donc pas espérer obtenir une image détaillée de l’exoplanète.

NB : Ce n’est d’ailleurs pas le but de la mission : si la résolution est insuffisante
pour imager la planète, elle est en revanche suffisante pour distinguer l’étoile
et la planète, ce qui permet de réaliser des analyses spectroscopiques sur la
planète et donc d’obtenir des informations sur son atmosphère.

Deuxième partie

Mesure de la variation temporelle de
g

❏ – 1. On repère trois ordres temps caractéristiques. Le plus court et le plus
notable est la demi-journée :

τ1 = 0,5 jour

Les deux oscillations ainsi observées chaque jour ne sont pas de même ampli-
tude :

τ2 = 1 jour

L’ensemble est modulé sur une durée d’environ :

τ3 = 15 jours

(par exemple, elle est maximale à 15 131 JJM et 15 146 JJM).

L’origine des deux premières oscillations est la rotation propre de la Terre sur
elle-même, la dernière semble être liée à la révolution de la Lune autour de la
Terre.

❏ – 2. Un référentiel galiléen est un référentiel où le principe d’inertie est
valide : tout point matériel qui n’est soumis à aucune force (isolé) est au
repos ou animé d’un mouvement de translation rectiligne uniforme.

Le référentiel de Copernic R0 prend pour origine le centre de masse du système
solaire, et les trois vecteurs de base pointent vers des étoiles très lointaines.

Le référentiel géocentrique Rg reprend les trois vecteurs de base présentés
ci-dessus mais prend comme origine le centre de la Terre.

❏ – 3. Si R0 est galiléen, il faut et il suffit que Rg soit en translation rectiligne
uniforme par rapport à R0. En effet, si M est un point matériel isolé, alors il
est en translation rectiligne uniforme dans R0. Pour qu’il le soit dans Rg, il
faut que Rg soit en TRU par rapport à R0.

Or Rg est en translation circulaire (approximativement uniforme) par rapport
à R0 donc Rg n’est pas galiléen.
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❏ – 4. Énoncé du théorème de Gauss gravitationnel : le flux du champ gravita-
tionnel à travers une surface (Σ) fermée et orientée vers l’extérieur est égal à la
masse totale Mint contenue dans le volume intérieur à cette surface multipliée
par−4πG. Le théorème de Gauss gravitationnel s’écrit :

‹ −→
G ·

−→
dS = −4πGMint

L’intégrale se fait sur une surface fermée, Mint est la masse contenue à l’inté-
rieur de cette dernière.

On considère que l’astre est à symétrie sphérique. On se dote des coordonnées
sphériques centrées sur l’astre (A) et de la base (A, #»er,

#»eθ,
# »eφ). Commençons

par l’étude des symétries et invariances.

— Invariances. La distribution de masse est à symétrie sphérique (inva-
riance par toute rotation autour du centre de l’astre A) : ainsi le champ
gravitationnel ne dépend pas des coordonnées angulaire θ et φ.

— Symétries. Tout plan contenant M et #»er est un plan de symétrie de la
distribution de masses. Ainsi, comme le champ gravitationnel appartient
aux plans de symétrie, il est dans le direction #»er.

#»G = G(r) #»er

On considère comme surface de Gauss une sphère de rayon r centrée sur A.
Le flux à travers cette surface est :

‹
#»G · #  »

dS =

‹
G(r) #»er · dS #»er = G(r)

‹
dS = G(r)4πr2

La masse contenue dans la surface de Gauss est mA car r > RA. D’où, d’après
le théorème de Gauss :

G(r)4πr2 = −4πGmA

d’où :
#»G (r) = −GmA

r2
#»er

que l’on peut réécrire (r = AM et
#     »

AM = r #»er) :

#»G (r) = −G mA

AM3

#     »

AM

❏ – 5. TM correspond à la durée pour que M gasse un tour complet autour de
l’axe des pôles, c’est le jour sidéral :

TM ≈ 1 jour

TL correspond à la période de révolution de la Lune autour de la Terre :

TL ≈ 28 jours

TS correspond à la période de révolution de la Terre autour du Soleil :

TS ≈ 365 jours

ω est la vitesse angulaire de rotation de la Terre autour de l’axe des pôles :

ω =
2π

TM
=

6,3

2,4× 3,6× 104
= 7,3× 10−5 rad · s−1

❏ – 6. Soit M un point immobile à la surface de la Terre. Sur ce point s’ap-
plique (dans le référentiel géocentrique non galiléen en translation circulaire
par rapport au référentiel de Copernic) :

— la force gravitationnelle exercée par la Terre :
#           »

FT→M = m
# »GT(M)

— la force gravitationnelle exercée par l’astre (A) :

#           »

FA→M = m
# »GA(M)

— la force d’inertie d’entraînement
−−−→
Fi,ent = −m−→a (T/R0)

— la force d’inertie de Coriolis est nulle car le référentiel géocentrique est
en translation ;

— la réaction du support exprimée d’après l’énoncé ainsi :
#»

R = −m #»g

L’accélération du centre de la Terre dans le référentiel de Copernic se
détermine en appliquant le principe fondamental de la dynamique à la Terre
soumise à l’action de l’astre :

mT
#»a (T/R0) = mT

# »GA(T )
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L’application du principe fondamental de la dynamique dans ce référentiel
donne :

#           »

FT→M +
#           »

FA→M +
#        »

Fi,ent +
#»

R = m #»a (M/RT )

Dans le référentiel géocentrique, le point M fixe à la surface terrestre a un
mouvement de rotation uniforme à la vitesse angulaire ω le long d’un cercle
de rayon HM avec H le projeté orthogonal de M sur l’axe de rotation, c’est-
à-dire

#»a (M/RT ) = −ω2−−→HM = −→w ∧ (−→ω ∧
−−→
TM) = −ω2 #     »

TM +
(

#     »

TM · #»ω
)

#»ω

Ainsi :
#»g =

# »GT(M) +
# »GA(M)− # »GA(T ) + ω2 #     »

TM −
(

#     »

TM · #»ω
)

#»ω

On a bien exprimé #»g ainsi : #»g =
# »GT(M) + #»γ0 +

#»γ1 avec :

#»γ0 = ω2 #     »

TM −
(

#     »

TM · #»ω
)

#»ω et #»γ1 =
# »GA(M)− # »GA(T )

❏ – 7. En considérant le vecteur #»ω constant dans le temps etM ne bougeant pas à
la surface de la Terre (latitude approximativement constante), le vecteur #»γ0 est
une constante, il n’intervient pas dans la variation locale de g (il intervient
dans ḡ).

Remarque : Le terme −→γ0 est le terme axifuge, maximal à l’équateur et nul aux
pôles. Il contribue comme une correction maximale de l’ordre de 0,03 m.s−2

et entraîne un léger décalage angulaire entre la verticale locale et la direction
du centre de la Terre.

❏ – 8. g est la composante verticale de la pesanteur ainsi :

δgA =
#»g · #»er − ⟨ #»g · #»er⟩

les termes
# »GT(M) et #»γ0 étant constants dans le temps :

δgA =
#»γ1 · #»er − ⟨ #»γ1 · #»er⟩

❏ – 9. On a :
# »GT = −GmA

d3A

#   »

AT et
# »GA = −G mA

AM3

#     »

AM

Simplifions l’expression de ce second terme dans le cadre de l’hypothèse de
l’énoncé. Tout d’abord :

AM2 =
#     »

AM · #     »

AM =
(

#   »

AT +
#     »

TM
)2

= AT 2 + TM2 + 2
#   »

AT · #     »

TM

Or AT = dA, TM = RT et
#   »

AT · #     »

TM = − #   »

TA · #     »

TM = −RTdA cos (ψA) d’où :

AM =
√
d2A +R2

T − 2RTdA cos (ψA)

Ainsi :

1

AM3
=

(
d2A +R2

T − 2RTdA cos (ψA)
)−3/2

=
1

d3A

(
1 +

R2
T

d2A
− 2

RT

dA
cos (ψA)

)−3/2

à l’ordre le plus bas en RT/dA :

1

AM3
=

1

d3A

(
1 + 3

RT

dA
cos (ψA)

)
Ainsi :

#»γ1 = G
mA

d3A

#   »

AT −G
mA

d3A

#     »

AM − 3G
mART cos (ψA)

d4A

#   »

AT − 3G
mART cos (ψA)

d4A

#     »

TM

#   »

AT − #     »

AM =
#   »

AT +
#     »

MA = − #     »

TM . Le dernier terme est négligeable devant le
premier terme. Il reste :

#»γ1 = −GmA

d3A

#     »

TM − 3G
mART cos (ψA)

d4A

#   »

AT

On a bien montré que :

#»γ1 = −GmA

d3A

(
#     »

TM + µ
#   »

TA
)

avec µ = −3RT

dA
cos (ψA)

que l’on peut réécrire ainsi :

µ = − 3

d2A

#   »

TA · #     »

TM

δgA est la partie variable de #»γ1 · #»er. Il est contenu dans le deuxième terme
(l’angle ψA entre

#     »

TM et
#   »

TA varie à cause de la rotation propre de la Terre en
particulier) :

−3GmART

d4A
cos (ψA)

#   »

TA · #»er

Soit, comme
#   »

TA · #»er = dA cos (ψA) :

−3GmART

d3A
cos2 (ψA)
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δgA est la partie variable de l’écriture ci-dessus :

δgA = −3GmART

d3A

(
cos2 (ψA)−

1

2

)
Soit :

δgA = −3GmART

2d3A
cos (2ψA)

❏ – 10. Dans ce cas, ψA = 0 d’où :

|δgA| =
3GmART

2d3A

Dans le cas de la Lune :

|δgL| =
3GmLRT

2d3L
=

3× 6,7× 10−11 × 7,3× 1022 × 6,4× 106

2× (3,8× 108)
3 = 8,6× 10−7 m · s−2

Dans le cas du Soleil :

|δgS| =
3GmSRT

2d3S
=

3× 6,7× 10−11 × 2,0× 1030 × 6,4× 106

2× (1,5× 1011)
3 = 3,8× 10−7 m · s−2

La rapport des deux est :

K =
mL

mS

d3S
d3L

= 2,2

Les valeurs obtenues sont du même ordre de grandeur, même si l’effet de la
Lune est prédominant. La correction de g par cet effet est mineure (de l’ordre
de 0,1 pour un million).

❏ – 11. On considère un mouvement circulaire de la Lune autour de la Terre, et
de la Terre autour du Soleil. Faisons une approximation forte, on suppose que
l’axe de rotation de la Terre est approximativement perpendiculaire au plan
de l’écliptique. Dans le référentiel géocentrique :

— l’angle décrivant M est ωt ;
— l’angle décrivant S est ΩSt (à une constante près), où ΩS est la vitesse

de rotation du Soleil dans le référentiel géocentrique, égale à la vitesse de
rotation de la Terre dans le référentiel héliocentrique approximativement
confondu avec le référentiel de Copernic :

ΩS =
2π

TS

— l’angle décrivant L est ΩLt (à une constante près), où ΩL est la vitesse
de rotation de la Lune dans le référentiel géocentrique :

ΩL =
2π

TL

Ainsi :

ψL = ωt− ΩLt+ ψL0 et ψS = ωt− ΩSt+ ψS0

D’où :

|δg| (t) = |δgS| cos (2ωt− 2ΩSt+ 2ψS0) + |δgL| cos (2ωt− 2ΩLt+ 2ψL0)

Le graphique est, en omettant 2ψS0 et 2ψL0 – ce qui revient à faire un bon
choix d’origine des temps :

t (jours)

|δg| (t)
(
µm · s−2

)
1,24

5 10 15

On ne perçoit pas la différence d’amplitude entre les deux oscillations quo-
tidiennes car on n’a pas pris en compte l’inclinaison de l’axe de la rotation
terrestre. On retrouve les deux autres périodes. L’ordre de grandeur de δg est
le bon.
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