
Épreuve I concours blanc : correction PC* 2025-2026

Meilleure note :

Moyenne :

Écart-type :

I L’atmosphère de Mars et son échappement

Q1 Par définition, le poids est la somme de la force de gravitation et de la force
d’inertie d’entraînement (ici due à la rotation de la planète Mars sur elle-même). La
force d’inertie d’entraînement est probablement ici négligeable (l’énoncé ne donne
pas de données).

Q2 Loi de Coulomb.

M1

M2

−→u 1→2

−→
F 1→2

La force électrostatique exercée par la charge q1
sur la charge q2 est de la forme :

−−−→
F1→2 =

1

4πϵ0

q1q2
M1M3

2

−−−−→
M1M2 = k

q1q2
r212

−→u 1→2�



�
	−→

F q1/q2 =
q1q2

4πϵ0d3
−−−−→
M1M2

Q3 Analogies électrostatiques/gravitationnelles :

Électrostatique Gravitation

q m
−→
E1(M) =

q1
4πϵ0r2

−→ur
−→
G1(M) = −Gm1

r2
−→ur

1

4πϵ0
−G

Théorème de Gauss gravitationnel :
Énoncé : le flux sortant du champ gravitationnel créé par une distribution de
masse D, à travers une surface fermée (S ), est égal à la masse de D située à
l’intérieur de (S ) fois −4π :�

�
�
�ΦcalS(G =

‚
S
−→
G (M) ·

−−→
dSM = −4πGmint

Q4 On assimile le champ de pesanteur au champ gravitationnel. La distribution
de masses est :

— invariante par rotation d’angles θ et ϕ quelconques.
— Par les plans de symétries : (M, e⃗r, e⃗θ) et (M, e⃗r, e⃗ϕ)

Ainsi g⃗(r, θ, ϕ) = gr(r) e⃗r .
Surface de Gauss : sphère de rayon r.
Hypothèse : on néglige la contribution de l’atmosphère à g⃗.
l’application du théorème de Gauss gravitationnel conduit à

4πr2gr(r) = −4πGmm

dc gr(r) = −Gmm

r2

dc

�



�
	g⃗(r) = −Gmm

r2
e⃗r

Q5 Au niveau du sol, r = Rm, g⃗0 = −Gmm

R2
m

e⃗r donc

�
�

�

g⃗(r) =

(
Rm

r

)2

g⃗0 .

AN : g0 = 3, 73m.s−2.

Q6 L’équivalent volumique des forces de pression a pour expression :�� ��f⃗P = −
−−→
grad(P ) .

Pour le système {Particule de fluide de volume dτ}, dans le référentiel martien
supposé galiléen, et à l’équilibre, le TRC nous donne l’équation locale de la statique
des fluides : �� ��0⃗ = µg⃗ −

−−→
grad(P ) .
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Q7 En assimilant l’atmosphère à un GP, on a PV = nRT =
mRT

Ma
soit

µ =
MaP

RT
.

D’après Q6, et après projection dans la base sphérique, on a :

−∂P

∂r
=

MaPg

RT
(1)

−1

r

∂P

∂θ
= 0 (2)

− 1

r sin(θ)

∂P

∂ϕ
= 0 (3)

Les lignes (2) et (3) impliquent que P (r, θ, ϕ) = P (r) soit
dP

dr
+

P

H
= 0 avec

H =
RT0

Mag0
.

La condition aux limites P (r = Rm) = P0 nous donne l’expression demandée :�
�

�

P (r, θ, ϕ) = P0 e

−
r −Rm

H = C0 e
−
r

H

avec

�



�
	H =

RT0

Mag0
et

�



�
	C0 = P0 e

Rm

H .

Q8 D’après les données de l’introduction relative à la composition de l’atmo-
sphère :
Ma = 96%×MCO2 + 2%×MAr + 2%×MN2 .
AN : Ma = 43, 6 g.mol−1 et H = 10, 7 km.

Q9 D’après Q7, on a µ(M) =
MaP (M)

RT0
=

MaP0

RT0
e
−
r −Rm

H = µ0 e
−
r −Rm

H

avec

�



�
	H =

RT0

Mag0
et

�



�
	µ0 =

MaP0

RT0
.

Q10 Déterminons matm par intégration de µdτ sur tout l’espace entre Rm et
l’infini. On supposera que l’hypothèse g uniforme est encore valable.

matm =

˚
Vint

µdτ

=

ˆ +∞

r=Rm

µ0e
−
r −Rm

H 4πr2 dr

= 4πµ0H
3

ˆ +∞

0

(
u+

Rm

H

)2

e−udu

= 4πµ0H
3 ×

(
2 + 2

Rm

H
+

(
Rm

H

)2
)

en utilisant les intégrales données en fin d’énoncé.

Avec µ0H =
P0

g0
, on obtient le résultat demandé :�



�
	matm = 4π

P0

g0

(
2H2 + 2HRm +R2

m

)
.

Avec Rm ≫ H, on obtient

�



�
	matm ≃ 4π

P0

g0
R2

m .

AN : matm = 2.34 · 1016 kg.

Remarque : cette valeur est cohérente avec l’indication initiale de l’énoncé : «l’at-
mosphère martienne est estimée à 25 teratonnes (25 000 milliards de tonnes) ».

Q11. Le libre parcours moyen est la distance moyenne parcourue par une parti-
cule entre deux collisions.

Au niveau du sol µ0 =
MaP0

RT0
donc

�



�
	ℓ0 =

RT0

a2NaP0
.

AN avec a ≈ 10−10 m, ℓ0 ≈ 0, 5mm.
Cette distance est très supérieure à la taille des particules, en accord avec un gaz
très dilué pour cette pression très réduite.

Q12 Par définition de e, en r = Rm + e, on a

H = ℓ(r = Rm + e) =
Ma

a2Naµ0e−e/H
= ℓ0e

e/H .
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Ainsi on trouve

�
�

�

e = H ln

(
H

l0

)
.

AN : e = 1, 8 · 105 m

La valeur est en bon accord avec l’indication donnée en fin d’énoncé (e = 2, 2 ×
102 km).

Q13 Déterminons au préalable la vitesse de libération d’une particule de masse
m.
La vitesse de libération vℓ est solution de l’équation 0 = Em =

1

2
mv2ℓ − Gmmm

Rm + e
.

On isole

�
�

�

vℓ =

√
2Gmm

Rm + e

AN : v ≈ 5, 0 · 103 m.s−1.

On note que la vitesse moyenne des molécules décroît avec la masse de ces molécules
et que seule la distribution de vitesse des entités les plus légères peut présenter
des vitesses supérieures à la vitesse de libération. On conçoit alors que H2 et He
aient pu subir le phénomène d’échappement.
À l’opposé, l’atmosphère martienne est maintenant composé des molécules les plus
lourdes : CO2, Ar et N2.

Q14 En ordre de grandeur, en considérant une molécule par volume d3 on a�



�
	n∗(r) =

1

d3(r)
.

Ainsi

�



�
	µ(r) =

Ma

Nad3(r)
.

Q15 Modèle continu : on doit avoir d ≪ e.

Or d =

(
Naµ

Ma

)−
1

3 d’après Q14 et µ = µ0e
−
r −Rm

H dans le cadre du modèle de

l’atmosphère isotherme. Ainsi d =

(
Naµ0

Ma

)−
1

3
e

r −Rm

3H .

Il faut donc choisir

�
�

�
�

r −Rm ≪ 3H ln

e

(
Naµ0

Ma

)1

3

 .

AN : r −Rm ≪ 1.0 · 106 m.
Le modèle continu est notamment valable dans l’exosphère à 10% près.

Q16 En simplifiant l’équation de Navier -Stokes :

Régime stationnaire ⇒ ∂v⃗

∂t
= 0⃗

Parfait ⇒ η = 0

v⃗ = vr(r)u⃗r ⇒ (v⃗ ·
−−→
grad )v⃗ = v

dv⃗

dr

On obtient l’équation

�



�
	µ(r) v(r)

dv

dr
= −dP

dr
− Gmmµ

r2
.

Q17 Pour un GP, P =
RTµ

Ma
ainsi l’équation Q15 se simplifie en�



�
	µ(r)v(r)

dv

dr
= −RT0

Ma

dµ

dr
− Gmmµ

r2
.

Q18 L’écoulement est stationnaire donc le débit massique se conserve (ou

÷(
−→
jm) = 0)). D’après le formulaire on a

1

r2
dr2µ(r)v(r)

dr
= 0, d’où�� ��µ(r) r2 v(r) = cste.

Autre version : Sur la sphère de rayon r, où v est uniforme, on a cste= 4πr2µv

d’où
�� ��µr2v =cste= K .
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Q19 En multipliant l’équation Q17 par r2 et en réinjectant µ =
K

r2v
, on a :

K
dv

dr
= −RT0

Ma
r2

d

dr

(
K

vr2

)
−Gmm

K

vr2

=
RT0K

Ma

(
1

v2
dv

dr
+

2

vr

)
− GmmK

vr2

En simplifiant par K et factorisant les termes en
dv

dr
, il vient :

dv

dr
×
(
1− RT0/Ma

v2

)
=

1

v

(
2RT0/Ma

r
− Gmm

r2

)
donc

dv

dr
×
(

v2

RT0/Ma
− 1

)
= v

(
2

r
− GmmMa/RT0

r2

)
On obtient le résultat demandé en divisant par v :

1

v

dv

dr
×
(
v2

c2
− 1

)
= 2

(
1

r
− r∗

r2

)
avec c =

√
RT0

Ma
et r∗ =

GmmMa

2RT0

Q20 Homogénéité :[
RT

Ma

]
=

[
kT

m

]
= [v2] donc l’expression de c est homogène.[

GmmMa

2RT

]
=

[
Gmmm

2kT

]
=

J.m

J
= m donc l’expression de r∗ est homogène.

AN : c = 200m.s−1 et r∗ = 5.35 · 108 m

Q21 En remplaçant r par r∗ dans Q19, et en notant que d’après l’énoncé
1

v

dv

dr
(r = r∗) ̸= 0, on obtient v(r∗) = ±c. En ne gardant que la solution positive

(champ des vitesses traduisant un échappement de l’atmosphère), on a v(r∗) = c .

Q22 En intégrant l’équation Q19 avec la condition aux limites précédente on
obtient :

v2

2c2
− ln

(v
c

)
= 2

(
ln
( r

r∗

)
+

r∗
r

)
− 3

2

En considérant un point d’altitude r = Rm + 150 km = 3540 km, une résolution
numérique de l’équation précédente conduit à

v

c
= 5.5 · 10−127 ou

v

c
= 24.

La mesure expérimentale de µ donnée par la sonde MAVEN, et four-
nie par l’énoncé, permet de calculer les débits massiques correspondant :
Dm = 3.5 · 10−120 kg.s−1 ou Dm = 1.5 · 108 kg.s−1.

Le débit massique mesuré par la sonde MAVEN est de 0.1 kg.s−1. La solution la
plus grande est aberrante car très supérieure au débit expérimental (×109) mesu-
rée par la sonde MAVEN ; elle correspondrait à un échappement de l’atmosphère
en ≈ 1010 s (masse de l’atmosphère de 3.8 · 1018 kg cf Q33). La solution la plus
petite est également aberrante car beaucoup trop faible ; elle correspondrait à un
échappement d’environ une molécule toutes les 1095 s.
Le modèle hydrodynamique présenté dans cette partie n’est donc pas un modèle correct
de l’échappement atmosphérique.

II Constitution d’une atmosphère martienne

Q23 On utilise l’expression de la question 10 et on obtient

�
�

�

m′

atm =
P ′
04πR

2
m

g0

AN : m′
atm = 3, 9 · 1018kg

Q24 Seul le carbone serait limitant. Comme m(CO2) = m′
atm

MC

MCO2

et il y a 2%

de carbone dans l’astéroïde,

�
�

�

mast = 50m′

atm

MC

MCO2

AN : mast = 5, 3 · 1019 kg
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25 Schéma :

26 Il y a conservation du moment cinétique puisque d’après le théorème du mo-
ment cinétique,

d
−→
LS

dt
=

−−→
SM ∧ F⃗ = 0⃗

car la force est centrale.

Il y a conservation de l’énergie mécanique puisque la force est conservative.

27 On applique le PFD à l’astéroïde dans le réferentiel héliocentrique galiléen et
il vient :

mp
v2

rp
=

Gmsmp

r2

On a donc v2 =
Gms

rast
et donc�



�
	Em =

1

2
mv2 − Gmsmp

rast
= −Gmsmp

2rast

28 On a −→v = ṙ−→ur + rθ̇−→uθ et�� ��−→
LS =

−−→
SM ∧mp

−→v = mpr
2θ̇−→uz = mpC

−→uz

avec
�� ��C = r2θ̇

29 Par définition,

Em = −Gmpms

r
+

1

2
mp(ṙ

2 + (rθ̇)2) =
1

2
mpṙ

2 + Eeff(r)

avec

�



�
	Eeff(r) =

1

2
mp

C2

r2
− Gmpms

r

30 Au périhélie rp et à l’aphélie ra, ṙ = 0 donc les positions extrémales de la
trajectoire vérifient

Em =
1

2
mp

C2

r2
− Gmpms

r

r2 +
Gmpms

Em
r − mpC

2

2Em
= 0

On en déduit donc que le grand axe 2a = ra+ rp = −Gmpms

Em
(somme des racines

de la forme x2 − Sx+ P = 0).

On a donc

�



�
	Em = −Gmpms

2a

31 A l’aphélie, lors du passage de la trajectoire circulaire à la trajectoire ellip-
tique, l’astéroide se "rapproche" globalement du soleil (voir schéma). Son énergie
diminue donc et ∆v < 0.
Du point de vue quantitatif : ∆Em = −GmSmP

2a
+

GmSmP

2rast
< 0 car a < rast

32 La variation d’énergie à l’aphélie est celle d’énergie cinétique puisque l’énergie
potentielle ne varie pas.
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∆Ec = ∆Em = − Gmpms

rast + rm
+

Gmpms

2rast
=

1

2
mp(v0 +∆v)2 − 1

2
mpv

2
0

avec v20 =
Gmsmp

rast

1

2
(v0 +∆v)2 =

Gms

rast
− Gms

rast + rm

On a finalement

�
�

�

∆v =

√
2Gms

(
1

rast
− 1

rast + rm

)
−
√

Gms

rast

AN : ∆v = −3160 m.s−1

33 Première proposition de réponse :
On fait l’hypothèse que l’énergie cinétique du système {asté-
roïde+propulseur+matière éjectée} se conserve dans le référentiel héliocentrique
supposé galiléen. Cette hypothèse revient à négliger le travail du propulseur.

1

2
mpv

2
0 =

1

2
(mp −∆m)(v0 +∆v)2 +

1

2
∆m(v0 + ve)

2

On a donc :

∆m = mp
v20 − (v0 +∆v)2

(v0 + ve)2 − (v0 +∆v)2

v0 = 17.103m.s−1 donc on trouve ∆m = 0, 18.1019kg

Il s’agit de presque 20% de la masse de l’astéroïde, ce qui ne parait pas vraiment
réalisable.

Seconde proposition de réponse :
On fait l’hypothèse que la quantité de mouvement du système {asté-
roïde+propulseur+matière éjectée} se conserve dans le référentiel héliocentrique
supposé galiléen. Cette hypothèse revient à considérer la quantité de mouvement
orthoradiale durant le bilan. En effet, elle est orthoradiale à l’aphélie alors que la

force extérieure gravitationnelle est radiale donc si l’éjection de matière est rapide
r varie peu et la quantité de mouvement reste orthoradiale. On a alors :

mpv0 = (mp −∆m)(v0 +∆v) + ∆m(v0 + ve)

On obtient alors :

∆m = mp
v0 − (v0 +∆v)

(v0 + ve)− (v0 +∆v)
= mp

−∆v

ve −∆v

On trouve alors ∆m = 0, 24.1019kg

Il s’agit de presque un quart de la masse de l’astéroïde, ce qui ne paraît pas
vraiment réalisable.

III Projet d’un avion solaire autonome sur Mars :
le Sky-Sailor

Q34 Soit ∆t le temps mis par le fluide pour parcourir le chemin allant du bord
d’attaque au bord de fuite. En supposant l’écoulement de vitesse constante, on a�



�
	∆t =

Li

V
=

Le

Ve

Q35 Comme Le > Li, on a nécessairement Ve > V . On appelle P0 la pression
de l’air en amont de l’aile, supposée identique sur les deux lignes de courant. La
vitesse y est alors V0. Si l’on applique le théorème de Bernoulli sur la ligne de
courant de l’extrados, on trouve, en négligeant les différences d’altitude :

P0 +
1

2
µV 2

0 = Pe +
1

2
µV 2

e

De même, sur la ligne de courant de l’intrados :

P0 +
1

2
µV 2

0 = Pi +
1

2
µV 2

Comme on vient de montrer que Ve > V alors on en déduit que Pe < Pi . L’aile
est alors "aspirée" vers le haut, ce qui crée la portance.
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Q36 La force de portance est donc la résultante des forces de pressions soit :�� ��−→
FP = (Pi − Pe)S

−→uz

Or, d’après les relations de Bernoulli, on a Pi − Pe =
1

2
µ(V 2

e − V 2). De plus,

Ve = V
Le

Li
. Il vient �

�
�

−→

FP =
1

2
µV 2

(
L2
e

L2
i − 1

)
S−→uz

Q37 En identifiant cette expression avec celle donnée dans l’énoncé, il vient
immédiatement que : �

�
�

Cp =

L2
e

L2
i

− 1

Q38 AN : Cp = 4, 04× 10−2.

Q39 Représentation des forces

Q40 Dans le référentiel martien, l’avion a un mouvement de translation rectiligne
uniforme. D’après le théorème de la résultante cinétique, on a

−→
P +

−→
T +

−→
FP +

−→
Ft =

−→
0 .

On en déduit : P = ∥
−→
P ∥ = FP =

1

2
µCPSV

2 et

T = ∥
−→
T ∥. = Ft =

1

2
µCtSV

2.

D’où :

�



�
	f =

CP

Ct
=

P

T

Q41 Pour propulser l’avion dans l’atmosphère, il faut au moins compenser la

traînée. Soit au minimum T = Ft. La puissance doit donc être : Pm =
1

2
µCtSV

3.

Avec Ct =
CP

f
et Mavg =

1

2
µCPSV

2 on obtient :

Pm =
1

f
MavgV =

1

f
Mavg

√
2Mavg

µCPS

Soit

�
�

�

Pm =

1

f

√
2M3

avg
3

µCPS

Q42 La masse volumique de l’air diminue avec l’altitude. Par conséquent Pm

augmente avec l’altitude. Sur Mars (comme sur Terre), il est donc plus facile de
voler à basse altitude qu’à haute altitude.

Q43 Le coefficient de portance est 20 fois plus grand que celui déterminé précé-
demment. Il faut remettre en question le modèle exploité. Pistes : profil et incli-
naison des ailes, fluide non parfait...

Q44. Pour un vol à basse altitude, on prend µ ≃ µ0. On trouve alors Pm ≃
8, 0 W pour une vitesse de V ≃ 51 m.s−1 = 183 km.h−1. Cette consommation est
très faible : de l’ordre d’une lampe fluo-compacte. Le système de propulsion est
amplement suffisant pour assurer le vol en stationnaire. Le dimensionnement du
système de propulsion se base en réalité sur la puissance nécessaire au décollage.
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