
MP*-PC* Lycée Buffon 2025-2026 1

Informatique Tronc Commun
Concours Blanc (Mines 2023, 2h)

Corrigé

Toute erreur signalée sur le corrigé est susceptible de rapporter des points bonus.

1. 100
16

= 1× 162 = 256, donc le montant versé est 2 dollars et 56 cents.

2. Il s’agit du caractère j.

3. SELECT Count(*)

FROM Glyphe

WHERE groman = True

4. SELECT gdesc

FROM Glyphe

JOIN Caractere ON Glyphe.code = Caractere.code

JOIN Police ON Police.pid = Glyphe.pid

WHERE car = "A" AND pnom = "Helvetica" AND groman = False

5. SELECT fnom, Count(*)

FROM Famille

JOIN Police ON Famille.fid = Police.fid

GROUP BY fnom

ORDER BY fnom

6. def points(v : [[[float]]]) -> [[float]]:

Lp = []

for ligne in v:

for point in ligne:

Lp.append(point)

return Lp

(le sujet comporte une erreur sur le type de retour de la fonction, on renvoie bien une
liste de points, donc une liste de liste de nombres. Ces annotations de type sont purement
indicatives).

7. def dim(l : [[float]], n : int) -> [float]:

R = []

for point in l:

R.append(point[n])

return R

8. def largeur(v : [[[float]]]) -> float:

Lx = dim(points(v), 0)

return max(Lx) - min(Lx)

9. def obtention_largeur(police : str) -> [float]:

R = []

for lettre in "abcdefghijklmnopqrstuvwxyz":

R.append(largeur(glyphe(lettre, police, True)))

R.append(largeur(glyphe(lettre, police, False)))

return R

10. def transforme(f : callable, v : [[[float]]]) -> [[[float]]]:

v2 = []

for ligne in v:

v2.append([f(point) for point in ligne])

return v2

MP*-PC* Lycée Buffon 2025-2026 2

11. Toutes les abscisses des points sont divisées par 2. Cela a pour effet de contracter les glyphes
en divisant leur largeur par 2.

12. def penche(: [[[float]]]) -> [[[float]]]:

def f(p : [float]) -> [float]:

return [p[0 + 0.5 * p[1], p[1]]

return transforme(f, v)

13. Les points encrés sont (0,0), (1,0), (2,1), (3,1), (4,1), (5,2), (6,2)

14. Puisque dx est négatif, il n’y a aucune itération dans la boucle for, et seul le point (9,8) est
encré. On peut prévenir ce comportement en ajoutant en début de fonction assert p0[0] <= p1[0]

15. Les points encrés sont (3,0), (4,4), (5,8).

Le segment tracé n’est donc pas formé de points contigus, et contient des trous. Cela est
dû au fait que dx < dy.

16. On échange les rôles joués par dx et dy :

def trace_quadrant_sud(im:img, p0:(int), p1:(int)):

assert p0[1] <= p1[1]

x0, y0 = p0

x1, y1 = p1

dx, dy = x1 - x0, y1 - y0

im.putpixel(p0, 0)

for i in range(1, dy):

p = (x0 + floor(0.5 + dx * i / dy), y0 + i)

im.putpixel(p, 0)

im.putpixel(p1, 0)

17. def trace_segment(im:Image, p0:(int), p1:(int)):

x0, y0 = p0

x1, y1 = p1

dx, dy = x1 - x0, y1 - y0

if x0 <= x1 and dy <= dx: trace_quadrant_est(im, p0, p1)

elif x1 <= x0 and -dy <= -dx: trace_quadrant_est(im, p1, p0)

elif y0 <= y1 and dx <= dy: trace_quadrant_sud(im, p0, p1)

else: trace_quadrant_sud(im, p1, p0)

18. def position(p:(float), pz:(int), taille:int) -> (int):

x,y = p

xz,yz = pz

return (floor(x*taille) + xz, -floor(y*taille) + yz)

19. def affiche_car(page:img, c:str, police:str, roman:bool, pz:(int),

taille:int) -> int:

v = glyphe(c, police, roman)

for ligne in v:

x, y = position(ligne[0], pz, taille)

trace_segment(page, (x,y), (x,y))

n = len(ligne)

for k in range(n-1):

debut = position(ligne[k], pz, taille)

fin = position(ligne[k+1], pz, taille)

trace_segment(debut, fin)

return taille*largeur(v)

20. def affiche_mot(page:Image, mot:str, ic:int, police:str, roman:bool,

pz:(int), taille:int) -> (int):

debut = pz

for car in mot:

MP*-PC* Lycée Buffon 2025-2026 3

largeur = affiche_car(page, car, police, roman, debut, taille)

debut = debut[0] + largeur + ic, debut[1]

return (debut{0] - ic, debut[1])

21. L’algorithme ajoute les mots à la ligne courante tant que c’est possible, et passe à une
nouvelle ligne dès que c’est nécessaire. Il est glouton car cjaque choix est fait localement, et
n’est jamais modifié par la suite.

22. (a) La première ligne va des indices i = 0 à j = 2, on calcule un coût de 0

La deuxième ligne va des indices i = 3 à j = 3, on calcule un coût de 16

La troisème ligne va des indices i = 4 à j = 4, on calcule un coût de 16

(b) La première ligne va des indices i = 0 à j = 1, on calcule un coût de 9

La deuxième ligne va des indices i = 2 à j = 3, on calcule un coût de 1

La troisème ligne va des indices i = 4 à j = 4, on calcule un coût de 16

On obtient un total de 32 pour a) et 26 pour b), l’algorithme par programmation dyna-
mique donne donc une solution plus harmonieuse sur cet exemple.

23. (L’énoncé est un peu confus, m n’est pas défini et doit être remplacé par lmots. Les variables
globales lmots et memo n’ont pas besoin d’être prises en argument par la fonction)

memo = {len(lmots) : 0}

def progd_memo(i:int,lmots:[int],L:int,memo:{int:int}) -> int:

if i in memo: return memo[i]

else:

mini=float("inf")

for j in range(i+1,len(lmots)+1):

d=progd_memo(j,lmots,L,memo)+cout(i,j-1,lmots,L)

if d<mini:

mini=d

memo[i] = mini

return mini

24. Pour l’algorithme récursif näıf, on a la relation de récurrence

C(n) =
n∑

i=1

(C(n− i) +O(i2))

En négligeant le terme en O(i2), on obtient déjà une complexité exponentielle.

Pour la fonction prog_bashaut, on a une complexité en O(n3), du fait des deux boucles
imbriquées et des appels à cout en O(n).

Le calcul de bas en haut est beaucoup plus rapide que le calcul récursif näıf.

25. def lignes(mots:[str],t:[int],L:int) -> [[str]]:

i = 0

R = []

while i<len(t):

R.append(mots[i:t[i])

i = t[i]

return R

26. def formatage(lignesdemots:[[str]],L:int) -> str:

texte = ""

for ligne in lignesdemots:

nbLettres = sum([len(mot) for mot in ligne])

nbEspaces = L -nbLettres

if len(ligne) == 1:

texte = texte + ligne[0] + " "*nbEspaces + "\n"

MP*-PC* Lycée Buffon 2025-2026 4

else:

nbCoupures = len(ligne) - 1

q = nbEspaces // nbCoupures

r = nbEspaces % nbCoupures

Espaces = [q+1]*r + [q]*(nbCoupures -r)

lignef = ""

for i in range(nbCoupures):

lignef = lignef + ligne[i] + " "*Espaces[i}

lignef = lignef + ligne[nbCoupures] + "\n"

texte = texte + lignef

return texte

