MP*-PC* Lycée Buffon 2025-2026 1

Informatique Tronc Commun
Concours Blanc (Mines 2023, 2h)
Corrigé

Toute erreur signalée sur le corrigé est susceptible de rapporter des points bonus.

1. 700° =1x 162 = 256, donc le montant versé est 2 dollars et 56 cents.

2. Il s’agit du caractere j.

3. SELECT Count (*)
FROM Glyphe
WHERE groman = True

4. SELECT gdesc
FROM Glyphe
JOIN Caractere ON Glyphe.code = Caractere.code
JOIN Police ON Police.pid = Glyphe.pid
WHERE car = "A" AND pnom = "Helvetica" AND groman = False

5. SELECT fnom, Count (*)
FROM Famille
JOIN Police ON Famille.fid = Police.fid
GROUP BY fnom
ORDER BY fnom

6. def points(v : [[[float]l]]) -> [[floatl]:
Lp = []
for ligne in v:
for point in ligne:
Lp.append(point)
return Lp

(le sujet comporte une erreur sur le type de retour de la fonction, on renvoie bien une
liste de points, donc une liste de liste de nombres. Ces annotations de type sont purement
indicatives).

7. def dim(1 : [[float]], n : int) -> [float]:
R =1[]
for point in 1:
R.append (point [n])
return R

8. def largeur(v : [[[float]]]) -> float:
Lx = dim(points(v), 0)
return max(Lx) - min(Lx)

9. def obtention_largeur(police : str) -> [float]:
R =[]
for lettre in "abcdefghijklmnopqrstuvwxyz":
R.append(largeur(glyphe(lettre, police, True)))
R.append(largeur(glyphe(lettre, police, False)))
return R

10. def transforme(f : callable, v : [[[float]]]) -> [[[float]]]:
v2 = []
for ligne in v:
v2.append ([f(point) for point in ligne])
return v2

MP*-PC* Lycée Buffon 2025-2026 2

11. Toutes les abscisses des points sont divisées par 2. Cela a pour effet de contracter les glyphes
en divisant leur largeur par 2.

12. def penche(: [[[float]]]) -> [[[float]l]l]:
def f(p : [float]) -> [float]:
return [p[0 + 0.5 * p[1], p[1]]
return transforme(f, v)

13. Les points encrés sont (0,0), (1,0), (2,1), (3,1), (4,1), (5,2), (6,2)

14. Puisque dx est négatif, il n’y a aucune itération dans la boucle for, et seul le point (9,8) est
encré. On peut prévenir ce comportement en ajoutant en début de fonction assert p0[0] <= p1[0]

15. Les points encrés sont (3,0), (4,4), (5,8).

Le segment tracé n’est donc pas formé de points contigus, et contient des trous. Cela est
di au fait que dx < dy.

16. On échange les roles joués par dx et dy :

def trace_quadrant_sud(im:img, pO:(int), pl:(int)):

assert pO[1] <= p1[1]

x0, y0O = pO

xl, y1 = p1

dx, dy = x1 - x0, y1 - yO

im.putpixel(p0, 0)

for i in range(1, dy):
p = (xO + floor(0.5 + dx * i / dy), yO + i)
im.putpixel(p, 0)

im.putpixel(pl, 0)

17. def trace_segment(im:Image, pO:(int), pl:(int)):
x0, yO = pO
x1l, yl1 = p1
dx, dy = x1 - x0, y1 - yO
if x0 <= x1 and dy <= dx: trace_quadrant_est(im, pO, pl)
elif x1 <= x0 and -dy <= -dx: trace_quadrant_est(im, pl, pO)
elif yO <= y1 and dx <= dy: trace_quadrant_sud(im, pO, pl)
else: trace_quadrant_sud(im, pl, pO)

18. def position(p:(float), pz:(int), taille:int) -> (int):
LYy =P
XZ,yz = pz
return (floor(xxtaille) + xz, -floor(yxtaille) + yz)

19. def affiche_car(page:img, c:str, police:str, roman:bool, pz:(int),
taille:int) -> int:
v = glyphe(c, police, roman)
for ligne in v:
X, y = position(ligne[0], pz, taille)
trace_segment (page, (x,y), (x,y))
n = len(ligne)
for k in range(n-1):
debut = position(lignel[k], pz, taille)
fin = position(ligne[k+1], pz, taille)
trace_segment (debut, fin)
return taillexlargeur(v)

20. def affiche_mot(page:Image, mot:str, ic:int, police:str, roman:bool,
pz:(int), taille:int) -> (int):
debut = pz
for car in mot:

MP*-PC* Lycée Buffon 2025-2026 3

largeur = affiche_car(page, car, police, roman, debut, taille)
debut = debut[0] + largeur + ic, debut[1]
return (debut{0] - ic, debut[1])

21. L’algorithme ajoute les mots a la ligne courante tant que c’est possible, et passe a une
nouvelle ligne deés que c’est nécessaire. Il est glouton car cjaque choix est fait localement, et
n’est jamais modifié par la suite.

22. (a) La premiére ligne va des indices ¢ = 0 & j = 2, on calcule un cofit de 0

La deuxiéme ligne va des indices ¢ = 3 a j = 3, on calcule un cotit de 16
La troiseme ligne va des indices ¢ =4 & j = 4, on calcule un cofit de 16
(b) La premiére ligne va des indices ¢ = 0 & j = 1, on calcule un cofit de 9
La deuxieme ligne va des indices i = 2 a j = 3, on calcule un cotit de 1
La troiseme ligne va des indices i = 4 a j = 4, on calcule un cotit de 16
On obtient un total de 32 pour a) et 26 pour b), algorithme par programmation dyna-
mique donne donc une solution plus harmonieuse sur cet exemple.

23. (L’énoncé est un peu confus, m n’est pas défini et doit étre remplacé par 1mots. Les variables

globales 1mots et memo n’ont pas besoin d’étre prises en argument par la fonction)

memo = {len(lmots) : 0O}

def progd_memo(i:int,lmots:[int],L:int,memo:{int:int}) -> int:
if i in memo: return memol[il
else:
mini=float("inf")
for j in range(i+1l,len(lmots)+1):
d=progd_memo (j,lmots,L,memo)+cout(i,j-1,1lmots,L)
if d<mini:
mini=d
memo[i] = mini
return mini

24. Pour l'algorithme récursif naif, on a la relation de récurrence

n

C(n) =) (C(n—1i)+ O(i?)

=1

En négligeant le terme en O(i2), on obtient déja une complexité exponentielle.
Pour la fonction prog_bashaut, on a une complexité en O(n?), du fait des deux boucles
imbriquées et des appels & cout en O(n).
Le calcul de bas en haut est beaucoup plus rapide que le calcul récursif naif.
25. def lignes(mots:[str],t:[int],L:int) -> [[strl]:
i=0
R=1]
while i<len(t):
R.append (mots[i:t[i])
i = t[i]
return R

26. def formatage(lignesdemots:[[str]],L:int) -> str:

texte = ""
for ligne in lignesdemots:
nblLettres = sum([len(mot) for mot in ligne])

nbEspaces = L -nbLettres
if len(ligne) ==
texte = texte + ligne[0] + " "*nbEspaces + "\n"

MP*-PC* Lycée Buffon 2025-2026

else:
nbCoupures = len(ligne) - 1
q = nbEspaces // nbCoupures
r = nbEspaces % nbCoupures
Espaces = [gq+1]*r + [q]l*(nbCoupures -r)
lignef = ""
for i in range(nbCoupures):
lignef = lignef + ligne[i] + " "xEspaces[i}
lignef = lignef + ligne[nbCoupures] + "\n"
texte = texte + lignef
return texte

