
Épreuve II concours blanc : correction PC* 2025-2026

Meilleure note :

Moyenne :

Écart-type :

Première partie

Lutte contre les incendies de forêts

I La lutte au sol

Q1 - Une particule de fluide est un élément petit à l’échelle de l’écoulement,
et grand à l’échelle microscopique.
L’échelle correspondante est l’échelle mésoscopique, de dimensions caractéris-
tiques typiques de l’ordre du micromètre.
C’est à cette échelle que s’écrivent les équations locales dans l’approximation des
milieux continus.
Un système ouvert est un système qui échange de la matière avec l’extérieur,
contrairement à un système fermé.

La relation de Bernoulli concerne les écoulements parfaits, stationnaires, in-
compressibles et homogènes dans un champ de pesanteur uniforme −g−→ez .
Une des formulations les plus utilisées établit que la somme

P +
1

2
ρv2 + ρgz = cste

le long d’une ligne de courant.

Q2 - Le volume d’eau après une durée τ de remplissage avec un débit volumique
Dv est

V = Dvτ = L2h0, soit

�



�
	h0 =

Dvτ

L2

AN : h0 = 65 cm.

Q3 - a) D’après la loi de la statique des fluides (une particule de fluide au repos
est soumise aux forces pressantes et à son poids).�� ��−→

0 = −
−−→
grad (P ) + ρ−→g .

b) Par projection sur l’axe des z on obtient :
dP

dz
= −ρg, soit par intégration entre

z et h0 : �� ��P (z) + ρgz = P0 + ρgh0.

c) La résulante des forces pressantes s’exerçant la surface dS de largeur L et de
hauteur dz est la somme des la force pressante extérieur de norme P0dS et de la
force pressante intérieure de norme P (z)dS, soit�� ��dF = (P (z)− P0)dS = ρg(h0 − z)Ldz

d) La force s’exerçant sur chaque flanc vertical a la même norme ; pour la calculer,
on intègre sur des éléments de surface Ldz ; en tenant compte de la force pressante
exercée par l’air à la pression P0 sur la face externe, on obtient�

�
�

Fp =

h0´
0

(P (z)− P0)Ldz = ρgL
h0´
0

(h0 − z)Ldz = ρgL
h2
0

2

4. Pour la face de droite du réservoir, la moment des forces pressantes par rapport
à O a pour expression :

MOy(
−→
Fp) =

 h0ˆ

0

(
L

2
−→ey + z−→ez) ∧ (P (z)− P0)Ldz

−→ex

 · e⃗y

MOy(
−→
Fp) =

h0ˆ

0

zρg(h0 − z)dz = ρgL

h0ˆ

0

(h0z − z2)dz = ρgL
h3
0

6

Soit hc l’altitude du centre de poussée ; on le détermine par hcFp = MOy(
−→
Fp) soit

hcρgL
h2
0

2
= ρgL

h3
0

6
. On en déduit �



�
	hc =

1

3
h0

Q5 - a) Dans le référentiel du véhicule, non galiléen, en translation rectiligne
uniformément accéléré par rapport au référentiel terrestre supposé galiléen, une
particule de fluide est soumise à
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— son poids, ρ−→g en volumique,
— les forces pressantes de résultante volumique −

−−→
grad (p),

— la force d’inertie d’entraînement
−−−→
fent,V = −ρ−→a .

b) Dans le référentiel du véhicule, le fluide est à l’équilibre. On a :
−→
0 = ρ−→g −

−−→
gradP − ρ−→a .

Par projection on obtient :
∂ P

∂ x
= −ρa et

∂ P

∂ z
= −ρg.

Soit P (x, z) = −ρax+ f(z), avec f ′(z) = −ρg.
On en déduit �� ��P (x, z) = −ρax− ρgz + cste

c) Les surfaces isobares sont donc les plans d’équation�� ��gz + ax = Constante

d) Le point milieu étant à l’altitude h0, on a

P (−L/2, h0) = P0 = −ρ(−a
L

2
+ gh0) + cste.

Soit cste = P0 + ρ(−a
L

2
+ gh0)

À l’avant du réservoir, la hauteur d’eau est telle que

P0 = −ρgh+ P0 + ρ(−a
L

2
+ gh0),

soit h = h0 −
aL

2g
.

Entre l’avant et l’arrière du réservoir, la dénivellation est�



�
	∆z =

a

g
L

AN : ∆z = 9, 7 cm.

e) Sur la face avant s’exerce une force de norme

Fav = ρgL
(h0 −

∆z

2
)2

2

et sur la face arrière s’exerce une force de norme

Far = ρgL
(h0 +

∆z

2
)2

2

Ces deux forces ne se compensent pas, et la résultante horizontale de ces forces est

Fhor =
1

2
ρgL

[
(h0 +

∆z

2
)2 − (h0 −

∆z

2
)2
]
= ρgLh0∆z = ρaL2h0

La force verticale exercée par le fond du réservoir reste inchangée ; elle compense
le poids et la force pressante exercée sur la surface libre :

Fver = (p0 + ρgh0)L
2 ≃ ρgh0L

2

où l’on a négligé la contribution de la pression atmosphérique.

Autre méthode : La résultante des forces exercées par l’eau sur le réservoir est
opposée à la résultante des forces exercées par le réservoir sur l’eau, qui est à
l’équilibre dans le référentiel mobile donc

−→
0 = −ρgh0L

2−→ez − ρgh0L
2−→ex +

−−−−−−→
Freservoir

en négligeant les forces pressantes.

Il vient �� ��−→
F = −ρh0L

2(g−→ez + a−→ex)

Q6 - En première approximation, le volume d’air est resté constant. La pression
étant p0 à la température T0 = 288 K, elle passe à pi à la température T = 313
K, avec �



�
	pi = p0

T

T0

AN : pi = 1, 1 bar.

Lorsque la vidange s’effectue, le volume offert à l’air augmente, et la pression
diminue. La vidange cesse lorsque la pression de l’eau au fond du réservoir n’est
plus supérieure à p0. La pression pf dans l’air est alors telle que p0 = pf + ρgh

pi(H − h0) = pf (H − h)

2
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En éliminant pf entre ces deux équations, on obtient

pi(H − h0) = (p0 − ρgh)(H − h)

ce qui est bien une équation du second degré en h. On trouve deux solutions, dont
une seule est comprise entre 0 et H. On retient donc cette solution :
AN : h = 64, 2 cm

Le volume d’eau vidangé est
�� ��Vvid = L2(h0 − h) , AN : Vvid = 7, 2 L.

La pression pf est alors
�� ��pf = p0 − ρgh , AN : pf = 0, 95 bar.

Le réservoir risque de se déformer sous l’effet de la pression de l’air extérieur. Ou
il sera difficile de retirer le bouchon.

Q7 - Par une fantaisie étrange, l’axe est orienté selon les x décroissants ; l’écou-
lement s’effectue selon les x décroissants, donc le champ des vitesses est de la
forme

−→v (x, t) = −v(x, t)êx avec v(x, t) ≥ 0

L’écoulement étant incompressible, la divergence de −→v est nulle ; v(x, t) est donc
indépendant de x. Il reste bien�� ��−→v (x, t) = −v(t)êx avec v(t) ≥ 0

Q 8 On suppose qu’il existe une ligne de courant joignant un point A de la surface
libre au point E à l’entrée du tube.

L’équation d’Euler peut s’écrire

ρ

(
∂−→v
∂ t

+
1

2

−−→
grad v2 −−→v ∧ −→

rot−→v
)

= −
−−→
grad (p+ ρgz)

soit

ρ
∂−→v
∂ t

+
−−→
grad

(
p+

1

2
ρv2 + ρgz

)
= ρ−→v ∧ −→

rot−→v

En intégrant sur la ligne de courant de A à E, on obtient, en considérant l’écou-
lement comme pratiquement indépendant du temps dans le réservoir :

[
p+

1

2
ρv2 + ρgz

]E
A

= ρ

Ê

A

(−→v ∧ −→
rot−→v

)
·
−→
dl = 0

soit, en considérant la vitesse d’écoulement négligeable en A :

pE +
1

2
ρv2 = p0 + ρgh0

Intégrons maintenant de E à S :

ρℓ
dv

dt
+

[
p+

1

2
ρv2 + ρgz

]S
E

= 0

La pression en S est la pression atmosphérique p0, donc

ρℓ
dv

dt
+ p0 − pE = 0

soit, en explicitant pE :

ρℓ
dv

dt
+

1

2
ρv2 = ρgh0

ce qui est bien de la forme�



�
	ℓ

dv

dt
+

v2

2
= k2 avec k2 = gh0

Q9 - L’équation précédente admet une solution constante�� ��v0 =
√
2gh0.

On peut alors réécrire l’équation

ℓ
dv

dt
+

v2

2
=

v20
2

3
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En posant w =
1

v + v0
, on a

v =
1

w
− v0; v

2 =
1

w2
− 2v0

w
+ v20 ;

dv

dt
= − ẇ

w2

L’équation différentielle en w s’écrit

−ℓ
ẇ

w2
+

1

2w2
− v0

w
= 0

ce qui devient une équation différentielle linéaire d’ordre 1 :�



�
	ẇ +

v0
ℓ
w =

1

2ℓ

et, en introduisant la constante de temps τ =
ℓ√
2gh0

=
ℓ

v0
:

ẇ +
1

τ
w =

1

2v0τ

La solution générale est

w =
1

2v0
+A exp(−t/τ)

Lorsque t → 0, v → 0 donc w → 1/v0. On en déduit que

1

v0
=

1

2v0
+A soit A =

1

2v0

On a donc, compte tenu des conditions initiales�



�
	w =

1

2v0
(1 + e−t/τ )

soit

v(t) =
2v0

1 + e−t/τ
− v0 = v0

2− 1− e−t/τ

1 + e−t/τ
= v0

1− e−t/τ

1 + e−t/τ

que l’on peut mettre sous la forme�
�

�

v(t) = v0 tanh

(
t

2τ

)
La valeur limite de la vitesse est

v1 = v0 =
√

2gh0 = 3, 57 m.s−1

Q10 - La constante de temps est

τ =
ℓ

v0
= 0, 22 s

La différence relative entre v et sa valeur limite vl = v0 est inférieure à 1% pour
t > t0, avec

tanh

(
t0
2τ

)
= 0, 99 soit t0 = 2τArgtanh(0, 99) = 1, 2 s

Ou
�� ��t0 = τ ln(199) , AN : t=1, 2 s.

Q11 - Considérons la vitesse limite toujours atteinte ; à tout instant, on a donc
une vitesse d’éjection

v =
√

2gh

Le bilan volumique conduit à l’équation différentielle d’évolution de la hauteur h :

−L2 dh

dt
=

πδ2

4

√
2gh

soit

h−1/2 dh

dt
= −πδ2

4L2

√
2g

que l’on intègre entre l’instant initial 0 et l’instant final tv :

2h
1/2
0 − 0 = −πδ2

4L2

√
2gtv

On en déduit la durée de la vidange�
�

�

tv =

8L2h
1/2
0

πδ2
√
2g

AN : tv = 1046 s ≃ 18 min

Q12 - Soit le système fermé F constitué
— à l’instant t du fluide en transit (système ouvert S(t)) dans la lance et du

fluide qui y entre (système σe) pendant [t, t+∆t] ;
— à l’instant t du fluide en transit (système ouvert S(t+∆t)) dans la pompe et

du fluide qui en sort (système σe) pendant [t, t+∆t].

4
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En régime permanent, l’énergie mécanique de S est indépendante du temps

ES(t) = ES(t+∆t) = E0

et les masses de σe et σs sont égales à

∆m = ρDv∆t

L’énergie mécanique de F peut s’écrire :

EF (t) = ES(t) + Eσe

= E0 + ρDv∆t

(
v2e
2

+ gze

)
EF (t+∆t) = ES(t+∆t) + Eσs

= E0 + ρDv∆t

(
v2s
2

+ gzs

)
On en déduit que

dEF

dt
= lim

∆t→0

EF (t+∆t)− EF (t)

∆t
= ρDv

(
v2s
2

− v2e
2

+ g(zs − ze)

)

Le théorème de l’énergie exprime que
dEF

dt
est égal à la somme des puissances des

efforts non conservatifs, soit

— la puissance P de la motopompe ;

— la puissance P1 = pe
πd21
4

ve = peDv des forces pressantes en amont ;

— la puissance P2 = −ps
πd22
4

vs = −psDv des forces pressantes en aval.

On obtient ainsi

ρDv

(
v2s
2

− v2e
2

+ g(zs − ze)

)
= P +Dv(pe − ps)

soit

ρDv

(
v2s
2

− v2e
2

+ g(zs − ze) +
ps − pe

ρ

)
= P

Q13 - On a zs − zh = ∆h = 20 m.
a) Les vitesses en entrée et en sortie peuvent s’exprimer en fonction du débit
volumique 

ve =
4Dv

πd21

vs =
4Dv

πd22

b) On en déduit

ρDv

(
8

π2

(
1

d42
− 1

d41

)
D2

v + g∆h+
ps − pe

ρ

)
= P

Le débit maximal correspond P = Pmax et ps − pe = ρgh0 négligeable devant
ρg∆h, soit �

�
�

ρDvmax

(
8

π2

(
1

d42
− 1

d41

)
D2

vmax + g∆h

)
= Pmax

On obtient une équation de degré 3 que l’on résout numériquement :

Dvmax = 3, 0.10−3 m3.s−1 = 3, 0 L.s−1

c) La vitesse maximale de l’eau en sortie de lance est

vmax =
4Dvmax

πd22
= 20 m.s−1

Q 14 - Soit le système fermé F constitué

— à l’instant t du fluide en transit (système ouvert S(t)) dans l’embout conique
de la lance et du fluide qui y entre (système σe) pendant [t, t+∆t] ;

5
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— à l’instant t du fluide en transit (système ouvert S(t + ∆t)) dans la pompe
et du fluide qui en sort (système σe) pendant [t, t+∆t].

En régime permanent, la quantité de mouvement de S est indépendante du temps
−→p S(t) =

−→p S(t+∆t) = −→p 0

et les masses de σe et σs sont égales à

∆m = ρDv∆t

La quantité de mouvement de F peut s’écrire :

−→p F (t) =
−→p S(t) +

−→p σe

= −→p 0 + ρDv∆t−→ve
−→p F (t+∆t) = −→p S(t+∆t) +−→p σs

= −→p 0 + ρDv∆t−→vs

On en déduit que

d−→p F

dt
= lim

∆t→0

−→p F (t+∆t)−−→p F (t)

∆t
= ρDv (

−→vs −−→ve)

Le théorème de la résultante cinétique exprime que
d−→p F

dt
est égal à la somme des

forces qui s’exercent sur F ; si on ne s’intéresse qu’à la partie horizontale de cette
force et si on néglige les forces pressantes amont et aval, on obtient

−
−→
Fe = ρDv (

−→vs −−→ve)

soit
−→
Fe = −ρDv

(
1− d22

d21

)
−→vs

Pour le débit maximal, le module de cette force est

Fe = 49 N

15. Le mouvement s’effectue dans le plan O′x′z′ ; en appliquant le théorème de la
résultante cinétique à une particule de fluide, on obtient les équations différentielles
suivantes  ẍ′ = 0

z̈′ = −g
soit

 ẋ′ = vs cosα

ż′ = −gt+ vs sinα

et finalement  x′ = vst cosα

z′ = −1

2
gt2 + vst sinα+ z′0

En éliminant le temps entre ces deux équations, on obtient

z′ = − gx′2

2v2s cos
2 α

+ tanαx′ + z′0

soit, en posant τ = tanα :

z′ = − g

2v2s
(1 + τ2)x′2 + τx′ + z′0

Q16 - Soit p la portée, c’est-à-dire la valeur de x′ pour laquelle z′ s’annule. Elle
est déterminée par l’équation du second degré

g

2v2s
(1 + τ2)p2 − τp− z′0 = 0

En différentiant, on obtient

g

v2s

[
p2τdτ + (1 + τ2)pdp

]
− dτp− τdp = 0

Lorsque la portée est maximale, on a dp = 0 donc

g

v2s
p2τdτ − pdτ = 0

soit

τp =
v2s
g

6
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On élimine τ dans l’équation du second degré qui se réduit alors à

g

2v2s

(
p2 +

(
v2s
g

)2
)

− v2s
g

− z′0 = 0

d’où l’on déduit
g

2v2s
p2 = z′0 +

v2s
2g

et finalement

p =

√
2v2s
g

(
z′0 +

v2s
2g

)
Numériquement, on obtient p = 57 m pour τ = 0, 71 soit α = 35o.

le lieu de largage et une altitude haute qui garantit la sécurité de l’appareil et de
ses occupants.

Deuxième partie

Le vol d’une balle de golf

Extrait de Physique 1 Centrale PC 2012

x

y

z

O

r

M

θ

−→v 0 = −v0
−→u x

Q1. L’écoulement étant stationnaire, la vitesse est indépendante du temps.

Le cylindre étant infini, il y a invariance par translation selon −→uz : la vitesse
est donc indépendante de z.

La vitesse dépend donc de r et de θ.
Q2. Le champ des vitesses doit vérifier les conditions aux limites :

— lim
r→∞

−→v (r, θ) = −v0
−→ux

— l’écoulement étant parfait, la vitesse est tangente à la surface du cylindre :
lim
r→R

−→v (r, θ) · −→ur = 0 ou vr(R, θ) = 0.

Q3. L’écoulement étant irrotationnel (−→rot−→v =
−→
0 ), il existe une fonction φ telle

que −→v =
−−→
gradφ.

Q4. Les composantes du champ de vitesse sont
vr =

∂ φ

∂ r
=
(
−v0 +

p

2πr2

)
cos θ

vθ =
1

r

∂ φ

∂ θ
=
(
v0 +

p

2πr2

)
sin θ +

R2

r
Ω

Q5. pour r → ∞

lim
r→∞

−→v (r, θ) = −v0 cos θ
−→ur + v0 sin θ

−→uθ = −v0
−→ux

La condition aux limites à l’infini est donc satisfaite.

pour r = R

−→v (R, θ) =
(
−v0 +

p

2πR2

)
cos θ−→ur +

[(
v0 +

p

2πR2

)
sin θ +

R2

r
Ω

]
−→uθ

La condition aux limites au contact du cylindre est donc satisfaite si et seule-
ment si

−v0 +
p

2πR2
= 0

ce qui détermine �� ��p = 2πR2v0

Le champ des vitesses est alors

−→v = v0

(
1− R2

r2

)
cos θ−→ur +

[
v0

(
1 +

R2

r2

)
sin θ +

R2Ω

r

]
−→uθ

Q6. Le théorème de Bernoulli montre que, dans un écoulement parfait, irrotation-
nel, permanent et incompressible, la somme

P +
1

2
ρv2

7
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est uniforme dans tout le fluide. Compte tenu de la valeur P0 de la pression à
l’infini, on obtient, entre la surface du cylindre et l’infini :

P (R, θ) = P0 +
1

2
ρv20 −

1

2
ρv2(R, θ)

P (R, θ) = P0 +
1

2
ρ(v20 − v2θ)

= P0 +
1

2
ρ
[
v20 − (2v0 sin θ +RΩ)

2
]

= P0 +
1

2
ρ
(
v20(1− 4 sin2 θ)−R2Ω2 − 4v0RΩsin θ

)
Q7. Soient deux points M(R, θ) et M ′(R, π − θ) symétriques l’un de l’autre

par rapport à (Oy). On a sin(π − θ) = sin θ donc P (R, θ) = P (R, π − θ).
Les forces de pression élémentaires s’exerçant sur des éléments de sur-
face symétriques par rapport à l’axe Oy sont elles-mêmes symétriques
par rapport à cet axe ; leur somme a donc une projection nulle selon −→u x.

x

y

z O

d
−→
Fd

−→
F

−→v 0 = −v0
−→u x

En sommant par éléments symétriques, on en déduit que la résultante
−→
F p des

forces de pression a une composante nulle selon −→u x.
Q8. La contribution d’un élément de surface dS = hRdθ est

d
−→
Fp · −→uy = −P (R, θ)hRdθ sin θ

En intégrant, on obtient

−→
Fp · −→uy = −

2π́

0

P (R, θ)hR sin θ dθ

= −Rh
2π́

0

[
P0 +

1

2
ρ
(
v20(1− 4 sin2 θ)−R2Ω2 − 4v0RΩsin θ

)]
sin θ dθ

= −1

2
ρhR

2π́

0

−4v0RΩsin2 θdθ

= 2πρhR2v0Ω

On a
�� ��−→
Fp = 2πρhR2v0Ω

−→u y

Or −→v0 ∧
−→
Ω = −v0

−→u x ∧ Ω−→u z = v0Ω
−→u y. On peut écrire la force totale sous la

forme �� ��−→
Fp = α−→v0 ∧

−→
Ω avec α = 2πρhR2

Q9. (a) Pour Ω > 0, la force est dirigée selon +−→uy ; la portance est dirigée vers
le haut, elle s’oppose au poids, et la portée est allongée.

Pour Ω < 0, elle est dirigée selon −−→uy ; la portance est dirigée vers le bas
(dans le même sens que le poids), et la portée est diminuée.

(b) La norme de cette force au départ d’un coup de ”driver” est, avec les
valeurs données dans l’énoncé :

Fp = 0, 4 N

Elle est presque aussi importante que le poids P = 0, 45 N.
(c) Si le vecteur-rotation n’est pas tout à fait porté par −→u z, la force

−→
Fp

possède une composante horizontale ; la trajectoire n’est pas plane et la
direction sera incorrecte.

(d) Il faudrait tenir compte de la viscosité de l’air. Il en résulte une force de
traînée ralentissant le mouvement du centre de masse de la balle et un
couple de freinage ralentissant la rotation de la balle, et diminuant ainsi
la portance.

Troisième partie

Contrariétés expérimentales

II Un voltmètre récalcitrant !

Une source de tension sinusoïdale de valeur efficace U = 240 V est branchée aux
bornes de deux résistances en série, toutes deux égales à R = 10 MΩ (Figure 1).

Q1 - D’après la formule du pont diviseur de tension :

8
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�



�
	UPM =

R

R+R
U =

U

2
= UMN .

Les valeurs efficaces des tensions UMN et UPM sont égales à 120 V.

Q2 - Posons R′ =
Rr

R+ r
la résistance équivalente à l’association parallèle du volt-

mètre avec le conducteur ohmique de résistance R. Lorsqu’on branche le volt-
mètre entre M et N, ou entre P et M, on mesure une tension efficace�

�
�

U ′

PM = U
R′

R+R′ = U
Rr

R(R+ r) +Rr
= U

r

R+ 2r

AN : U ′
PM = U ′

MN = 80 V

Lorsqu’on le branche entre P et N, on mesure une tension efficace
UPN = U = 240 V.

Q3 - Dans les deux premiers cas, on ne mesure pas la valeur attendue : l’appareil
de mesure perturbe le circuit électrique mesuré.

III Un oscilloscope perturbant !

Q4 - Une source de tension E = 12 V alimente trois résistances égales R disposées
en série (Figure 2).
La tension entre les bornes A et B dessinées sur le schéma est :�



�
	UAB =

R

R+R+R
E =

E

3
(Formule du pont diviseur de tension).

AN : UAB = 4 V.
Q5 - Pour mesurer cette tension on utilise l’oscilloscope dessiné sur la même Figure

2, borne A’ reliée à la borne A et borne B’ reliée à la borne B. Cet oscilloscope
a une impédance interne très supérieure à la résistance R et pourtant la
tension qu’il mesure n’est pas celle qui a été calculée. Il mesure une tension�



�
	U ′

AB =
E

2

soit U ′
AB = 6 V. En effet, la masse en B’ court-circuite la résistance R de la

branche du bas.

IV Une diode en danger !

Q6 - En régime stationnaire, l’intensité du courant électrique est nulle (le
condensateur se comporte comme un interrupteur ouvert).

Q7 - Cependant, le condensateur étant initialement non chargé, la diode est dé-
truite lors du branchement. En effet, à t = 0+, la tension aux bornes du
consensateur est nulle (il y a continuité de la tension aux bornes d’un conden-
sateur et il est déchargé en 0−). Soit I0, l’intensité du courant parcourant le
circuit à t = 0+, d’après le loi des mailles E = VD + 0, soit�



�
	I0 =

E

RD
.

AN : I0 = 20 A, ce qui est très supérieur à l’intensité admissible par la diode.
Q8 - La résistance minimale qui doit être montée en série avec la diode est donnée

par �



�
	Imax =

E

RD +Rmin
soit Rmin =

E

Imax
−RD

AN : Rmax = 11, 4 Ω

V Un oscilloscope en danger !

1. On a

�



�
	u = L

di

dt
(relation caractéristique d’une bobine). Une brutale variation

d’intensité s’accompagne de l’apparition d’une forte surtension.
2. — En régime permanent, la bobine est équivalente à un fil. L’intensité du

courant circulant avant l’ouverture du contact, est�



�
	I(0−) =

E

R
(Loi de Pouillet)

AN : I(0−) = 120 mA.

— L’intensité est continue en t = 0 ; on a donc i(0+) =
I(0−) ; cette intensité traverse la résistance d’entrée de l’os-
cillo, ce qui détermine la valeur de la tension atteinte

9
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�� ��Vp = RE i(0−) .

AN : VP = 1, 2.105 V. C’est bien supérieur à la tension admissible ; l’appareil
est donc en danger.

3. On peut se protéger de cet effet de surtension à l’aide d’une diode en la
branchant parallèlement à l’interrupteur.

Quand l’interrupteur est fermé, la diode est court-circuitée ; l’intensité qui la
traverse est nulle. Quand l’interrupteur est ouvert, l’intensité passe essentiel-
lement dans la diode, car RD ≪ RE ; on a approximativement

Vp = RD i(0−) = 7, 2.10−2 V

en prenant un modèle sans seuil de résistance RD = 0, 6 Ω ; l’oscillo ne risque
plus rien. Un modèle plus réaliste de diode avec seuil donnerait une tension
voisine de la tension de seuil de la diode, soit typiquement de 0,6 V. Cela reste
sans danger pour l’oscillo.
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