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Ondes mécaniques 1D

Applications directes du cours

1 On soumet l’extrémité d’une corde horizontale à une vibration transversale a(t) = a0 sin(2πf0t) où a0 = 0, 10 m
et f0 = 6, 0 Hz. La tension de la corde est T = 4, 0 N et sa masse linéique µ = 10 g.m−1.

1. Quelle est la célérité des ondes dans la corde ?

2. Quelle est la période et la longueur d’onde de l’onde ?

3. Quelle est l’expression en fonction de t du déplacement transversal du point de la corde à l’abscisse x = 1, 0 m
par rapport à la source ? (on négligera tout phénomène dissipatif).

4. Tracer l’allure de la corde à l’instant t =
π

12
.

2 On étudie une corde de guitare de longueur L = 1, 0 m et dont la fréquence du fondamental est 435 Hz.

1. Calculer la vitesse de phase.

2. La corde a un diamètre d = 1 mm et est en acier, de masse volumique ρ = 7, 9 · 103 kg.m−3. En déduire la
tension de la corde.

3 Une onde de la forme z(x, t) = z0 sin(4x − 8t) se propage sur une corde. Caractériser cette onde. Donner sa
pulsation, son vecteur d’onde et sa vitesse de propagation. Quelle équation vérifie z(x, t) ?

4 Soit l’onde de la forme z(x, t) = z0 sin(4t) cos(8t) sur une corde de longueur ℓ comprise entre x = 0 et x = ℓ.

1. Caractériser cette onde. Donner sa période T , sa longueur d’onde λ, et la vitesse C des ondes sur cette corde.
Écrire l’équation différentielle vérifiée par z(x, t).

2. Préciser la position des nœuds et la position des ventres sur la corde.

3. Représenter la corde aux instants t = 0 et t = T/4.

1 1. c = 20 m.s−1 ; 2. T = 0, 17 s, λ = 3, 3 m ; 3. y(x0, t) = a0 sin(2πf0t −
2πf0
c

x). 2 1. c = 870 m.s−1 ; 2.

T0 = ρ
πd2

4
c2, T0 = 4, 7 kN. 3 ω = 8 rad.s−1, k = 4 rad.m−1, c = 0, 5 m.s−1. 4 1. Onde stationnaire, ω = 8 rad.−1,

T = 0, 8 s, λ = 1, 6 m, C = 2. 3.

Exercices

1. Barreau élastique : du microscopique au macroscopique

Dans un solide cristallin, les atomes de masse m sont placés sur un réseau régulier (espacés de d à l’équilibre), et
reliés entre eux par des interactions que l’on peut modéliser par des ressorts identiques (raideur k, longueur à vide
ℓ0), qui permettent des vibrations et des propagations de compressions. On se limite ici à une étude à 1D, mais on
pourrait étendre le modèle à une description à 3D.
On cherche à relier le module d’Young E du matériau à k et d.

1. Par analyse dimensionnelle, relier E à k et d.

2. On adopte le modèle suivant : chaque atome est disposé aux nœuds d’un réseau dit ”cubique”, et relié à ses
voisins, distants de d à l’équilibre, par des ressorts de raideur k. L’ensemble du réseau subit une force F :
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Si S est la section du solide, la force F se répartit sur N châınes d’atomes. Calculer le nombre de châınes, et la
force f sur chacune. En déduire l’allongement ∆d d’un ressort en appliquant la loi de la quantité de mouvement
à l’atome situé l’extrémité de la ligne.
Par ailleurs, rappeler la relation entre F , E et ∆L.

Montrer enfin que
∆L

L
=

∆d

d
et en déduire à nouveau la relation entre E, k et d.

3. On souhaite enfin expliquer plus précisément la nature des ressorts invoqués dans ce modèle. En réalité, l’inter-
action entre 2 atomes dans une liaison ionique ou covalente (d’origine électrostatique mais aussi quantique) peut

s’écrire par une énergie potentielle de la forme U(d) = +
A

d2
− B

d
où A et B sont des constantes positives. On

suppose qu’à l’équilibre (stable), on a une distance d0 pour une énergie potentielle U0.

(a) Tracer qualitativement le graphe U(d) en y plaçant U0 et d0.

(b) Relier U0 et d0 à A et B.

(c) Au voisinage de d = d0 (on posera d = d0+∆d avec ∆d ≪ d0), déterminer l’expression approchée de l’énergie
potentielle, puis de la force f(∆d).

(d) En déduire la raideur k du ressort équivalent, puis du module d’Young E en fonction de U0 et d0.
Estimer E pour U0 = −3 eV et d0 = 0, 3 nm.

2. Vibrations longitudinales d’une lame de céramique

On étudie les petits mouvements de déformation le long de l’axe horizontal Ox d’une lame de céramique de section
S (perpendiculairement à l’axe Ox) et de masse volumique µ0. À l’équilibre, la pression est uniforme dans la lame,
égale à P0. À l’instant t, un plan d’abscisse x au repos se trouve à l’abscisse x+ s(x, t), sa vitesse vibratoire est u(x, t).
On néglige tout effet lié à la pesanteur. Dans le domaine d’élasticité du matériau, la force de traction T permettant à

la lame de section S et de longueur L de s’allonger de ∆L est donnée par la loi de Hooke : T = ES
∆L

L
où E est le

module de Young du matériau.

1. Montrer qu’à l’abscisse x, à l’instant t, la force de traction que la partie droite de la lame exerce sur la partie

gauche est : T (x, t) = ES
∂ s

∂ x
(x, t).

2. Écrire l’équation du mouvement d’une tranche de lame située au repos entre les plans d’abscisses x et x + dx.
En déduire que la déformation s(x, t) vérifie une équation de d’Alembert à une dimension. Quelle est la célérité
c des ondes ?
Application numérique : Calculer c pour une lame de masse volumique µ0 = 3, 4 · 103 kg.m−3, de module de
Young E = 8, 0 · 1010 N.m−2.

3. Donner sans démonstration la forme des solutions de cette équation. Interpréter chaque terme.

3. Résonance

On fait apparâıtre des vibrations sur une corde à l’aide d’un vibreur en faisant varier sa fréquence. Pour une fréquence
f0, on observe le schéma de gauche.
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On immerge alors la sphère de masse m dans un récipient contenant de l’eau et on observe le schéma de droite.

Estimer le rayon de la sphère (m = 50g).

4. Corde pendante

Une corde inextensible et infiniment souple, de masse linéique µ, est accrochée à ses deux extrémités, en x = −a/2
et en x = a/2. Par rapport au cours, on ne néglige plus l’action du poids, et on ne suppose plus les angles par rapport
à l’horizontal petits. On cherche à savoir quelle forme prend la corde au repos.

1. Montrer que l’équation qui régit la forme de la corde est :

d 2y

dx2
=

µg

T0

√
1 +

(
d y

dx

)2

2. Résoudre cette équation en posant d’abord u = dy/dx, puis en intégrant deux fois. Comment obtenir T0 ?

3. Déterminer alors la hauteur h. En faire l’application numérique pour une corde de masse m = 1, 9 g, de longueur
L = 63 cm tendue par une tension T0 = 103 N (guitare). Le fait de négliger le poids dans le cours vous parâıt-il
raisonnable ?

Données : une primitive de
1√

1 + u2
est argsh(u), où la fonction argsh(x) est la réciproque de la fonction sh(x).

5. Corde plombée

Une corde est plombée en son milieu M par une masse m. On néglige la pesanteur, et la corde, fixée à ses deux
extrémités, est tendue avec la tension T0 quand l’ensemble est au repos.

1. L’élongation dans les deux parties de la corde s’écrit :

— pour 0 ≤ x ≤ L

2
, y(x, t) = y1(x, t) = A1 sin(kx) cos(ωt)

— pour
L

2
≤ x ≤ L, y(x, t) = y2(x, t) = A2 sin(k(L− x)) cos(ωt)

avec ω = kc.
En déduire le système d’équations que vérifie les amplitudes A1 et A2 :

(A1 −A2) sin

(
kL

2

)
= 0,

mA1ω
2 sin

(
kL

2

)
= kT0(A2 +A1) cos

(
kL

2

)
.

2. Le système d’équations présente plusieurs solutions que nous allons étudier :

(a) Si : kL = 2nπ, conclure sur la position de la masse,

(b) Si : kL ̸= 2nπ, déterminer en particulier les pulsations propres de la corde et étudier les cas limites m ≪ µL
et m ≫ µL.
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6. Corde de piano

À l’origine des dates, une corde de piano de masse linéique µ et de longueur L, tendue le long de l’axe horizontal
x′x est frappée par un petit marteau de largeur e ≪ L entre les abscisses a et a+ e. Ce coup de marteau communique
aux points frappés une vitesse u transversale à partir de la position d’équilibre, et une vitesse nulle pour les autres
points.

1. Équation d’onde
Donner l’équation de propagation que satisfont les petites élongations transversales z(x, t) le long de la corde de
piano.

2. Solution générale, conditions limites
Cette dernière se trouvant fixée à ses deux extrémités, quelles sont les formes des solutions de cette équation ?
Écrire la solution générale et définir le spectre du mouvement de la corde.

3. Prise en compte des conditions initiales
Compte tenu des conditions initiales, déterminer les amplitudes des harmoniques présents dans le spectre du
mouvement de la corde.

Donnée : Spectre de Fourier de la fonction périodique ci-dessous :

f(x) =

∞∑
n=1

4u

nπ
sin

nπe

2L
sin

nπ(2a+ e)

2L
sin

nπx

L

7. Tsunami

Un tsunami est une onde qui se forme en pleine mer, à la suite d’un mouvement rapide du fond océanique.

Vagues en eau profonde.

L’océan est modélisé par une étendue d’eau de masse volumique constante ρ dont le fond est le plan z = 0 et la
hauteur au repos est noté h0. Les vagues sont modélisées comme une perturbation ξ(x, t) de cette hauteur. En présence
des vagues, on a donc h(x, t) = h0 + ξ(x, t). On néglige tout effet visqueux et le champ de vitesse dû aux vagues est
supposé unidirectionnel :

−→v (M, t) = v(x, t)−→ux

On note P0 la pression atmosphérique, c la célérité des ondes et on travaillera dans cet exercice en se limitant à l’ordre
1 en v/c et ξ/h0. Autrement dit, v et ξ sont des infiniment petit d’ordre 1.

1. En faisant un bilan de masse sur une tranche d’eau comprise entre x et x + dx et de largeur L, montrer qu’à
l’ordre 1 on a

∂ ξ

∂ t
= −h0

∂ v

∂ x
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2. Les effets visqueux étant négligés, on peut écrire l’équation d’Euler. Montrer que P est de la forme :

P (x, z, t) = −ρgz + f(x, t)

puis déterminer f(x, t) en fonction de ξ(x, t), h0, ρ, g et P0.

3. Montrer que l’accélération convective est négligeable devant l’accélération locale. En déduire une deuxième
équation aux dérivées partielles couplant v et ξ :

∂ v

∂ t
= −g

∂ ξ

∂ x

4. En déduire que v et ξ vérifient une équation de d’Alembert et identifier la célérité c.

Amplification continentale.

On souhaite modéliser l’évolution du tsunami à l’arrivée près des côtes. On considère pour cela le passage d’une
vague sur un changement de fond. La pleine mer occupe le milieu x < 0 (milieu 1) où la profondeur est h1, tandis que
le plateau continental occupe le milieu x > 0 (milieu 2), où la profondeur est h2 < h1.

1. Les perturbations sont modélisées par des ondes progressives harmoniques. Elles s’écrivent en notation complexe
ξ(x, t) = A exp(j(ωt− k1x)) +B exp(j(ωt+ k1x)) pour x < 0, et ξ(x, t) = C exp(j(ωt− k2x)) pour x > 0.
Interpréter chacun de ses trois termes. Quel est le champ de vitesses correspondant dans chaque demi-espace ?

2. Quelles conditions aux limites sont vérifiées en x = 0?

3. En déduire le coefficient multiplicatif que subit la hauteur de la vague lorsqu’elle franchit la rupture entre le fond
océanique et le plateau continental. Commenter.

8. Étude des vibrations d’une corde verticale

L’axe (Ox) est vertical ascendant, (Oy) est horizontal. Une corde infiniment souple, de masse linéique µ, de longueur
L est suspendue au point A dans le champ de pesanteur −→g . Lorsque la corde est au repos, son extrémité inférieure
cöıncide avec le point O.

Son point d’accrochage A effectue des oscillations horizontales yA(t) = a cos(ωt), d’amplitude a très inférieure à L.
L’extrémité inférieure ne subit aucune contrainte.

Le déplacement quasi horizontal du point d’ordonnée x de la corde par rapport à sa position d’équilibre est noté
y(x, t). Dans toute la suite, on suppose que y et ses dérivées sont très petits, et que le déplacement de la corde ne se
produit que dans la direction (Oy).

1. Montrer que l’équation de propagation des ondes le long de la corde est :

∂2 y

∂ t2
= g

(
∂ y

∂ x
+ x

∂2 y

∂ x2

)
2. Cette équation est une équation aux dérivées partielles linéaires, mais dont les coefficients ne sont pas constants

(le x devant le dernier terme). Les OPPH ne sont dans ce cas pas solutions. Pour résoudre cette équation, on
cherche une solution sous la forme

y(x, t) = A(x) cos(ωt) +B(x) sin(ωt)

Le choix de la dépendance temporelle harmonique à la pulsation ω provient du fait que la corde est excitée
sinusöıdalement à ω. L’équation d’onde étant linéaire, il ne peut pas nâıtre d’autres pulsations sur la corde.
Trouver l’équation vérifiée par A(x) et B(x).

5
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3. On peut résoudre l’équation sur A(x) en cherchant A(x) sous forme de série entière :

A(x) =

∞∑
k=0

αkx
k

Obtenir une relation de récurrence sur les αk, en déduire l’expression des αk et donner les 3 premiers termes du
développement en série entière de A en fonction de α0.

4. Obtenir B(x) de manière identique. Comment peut-on déterminer les premiers coefficents α0 et β0 ?
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