
MP*-PC* Lycée Buffon 2025-2026 TP 5 1

TP D’INFORMATIQUE N°5
Algorithme des k plus proches voisins

1 Implémentation de knn

Dans la suite, on identifiera un point au tuple de ses coordonnées, et on appelera point annoté un
couple formé d’un point et d’une étiquette (entière).

1. Écrire une fonction distance prenant en argument deux points ayant le même nombre de
coordonnées, et renvoyant la distance euclidienne entre ces points.

2. On veut à présent écrire une fonction liste_voisins prenant en argument un point p,
un entier k, et un échantillon d’entrâınement (ie une liste de points annotés) Ltrain, et
renvoyant la liste des k points annotés les plus proches du point p.

Implémenter une version de cette fonction utilisant la fonction sorted de Python :
sorted(L, key = f) renvoie une version de la liste L triée par valeurs croissantes des f(x),
x ∈ L. On prendra bien soin de définir préalablement la bonne fonction f à l’intérieur de la
définition de liste_voisins. On notera bien que cette fonction f doit prendre en argument
un élément de L, c’est-à-dire un point annoté.

3. Écrire une fonction etiquette_maj prenant en argument une liste de points annotés V, et
renvoyant une étiquette majoritaire dans V, c’est-à-dire dont le nombre d’occurrences est
maximal.

4. Écrire une fonction knn prenant en argument un point p, un entier k et un échantillon
d’entrainement Ltrain, et renvoyant l’étiquette prédite par l’algorithme des k plus proches
voisins pour le point p.

2 Test sur la reconnaissance de chiffre

Pour tester la fonction knn, nous allons importer une banque d’exemples annotés d’images de
chiffres disponible dans la bibliothèque scikit-learn.

1. Importer cette banque en recopiant le code suivant :

from sklearn.datasets import load_digits

digits = load_digits()

X = digits.data

Y = digits.target

X contient alors la liste des 1797 points de la banque. Chaque point correspond à une image
de 8× 8 pixels, représentée par une liste de 64 nombres. Y correspond aux 1797 annotations
associées à ces points, ainsi Y[0] indique le chiffre représenté sur l’image codée dans X[0].
On peut afficher cette image avec le code suivant :

import matplotlib.pyplot as plt

plt.imshow(digits.images[0], cmap = ’gray’)

plt.show()

2. Combiner les deux listes X et Y en une seule liste L de points annotés.

3. Importer la bibliothèque random, et utiliser la fonction shuffle de cette bibilothèque pour
mélanger L. Former ensuite une liste Ltrain formée des 80% premiers éléments de L, et
Ltest formée des éléments restants.

4. Utiliser Ltrain et Ltest pour tester votre fonction knn avec différentes valeurs de k.

MP*-PC* Lycée Buffon 2025-2026 TP 5 2

5. Pour chaque valeur de k de 1 à 15, afficher le taux d’erreur empirique sur Ltest de knn

exploitant Ltrain. Proposer une valeur de k permettant de minimiser ce taux d’erreur.

6. Compléter l’affichage précédent pour afficher également la matrice de confusion dans chaque
cas.

7. Déterminer une valeur de k permettant de minimiser la somme pour chaque point de L2test
de |ec − ep|, où ec est l’étiquette annotée et ep l’étiquette prédite par knn.

3 Test sur une nouvelle image

On se propose maintenant de créer nous-même l’image sur laquelle nous allons tester notre version
de knn.

1. Créer avec paint une image de dimensions 8 × 8 représentant un magnifique chiffre. Enre-
gistrer cette image au format png dans le répertoire de travail de Pyzo.

2. Charger cette image dans Python à l’aide de la fonction imread de la bibliothèque matplotlib.pyplot,
prenant en entrée le nom du fichier.

3. Afficher l’image avec les fonctions imshow et show.

4. Il faut à présent passer l’image au même format que les points manipulés par knn. Observer
le format actuel de l’image. Par exemple, chaque pixel peut correspondre à une liste de
quatre valeurs entre 0 et 1. Il faut alors :

• créer une nouvelle image de la bonne taille ;
• Définir chaque pixel de cette nouvelle image comme la première valeur du pixel corres-
pondant dans l’image de départ (passage en noir et blanc) ;

• remplacer chaque valeur de pixel x par 1− x (pour obtenir un chiffre tracé en blanc sur
fond noir) ;

• multiplier chaque valeur de pixel par 16 (pour utiliser la même plage de valeurs que dans
la banque utilisée) ;

• aplatir l’image 8× 8 en une liste de longueur 64, en concaténant chacune des 8 lignes de
l’image.

5. Tester knn sur le point obtenu à partir de votre image, avec une valeur de k judicieusement
choisie.

4 Variantes

1. On se propose d’écrire une autre implémentation de la fonction Liste_voisins, maintenant
à jour une liste des k points les plus proches de p rencontrés jusque-là dans Ltrain.

(a) Écrire une procédure inserer prenant en argument un point p, un point annoté p2 et
une liste de points annotés V supposée triée selon la distance à p, et insérant p2 dans V
de façon à la maintenir triée.

Par exemple, si p = (0, 1) et V = [((0, 0.8), 0), ((0, 1.3), 1), ((0, 2), 0)],
à l’issue de l’appel inserer(p, ((0.4, 1), 1), V), on aura comme nouvelle valeur
V = [((0, 0.8), 0), ((0, 1.3), 1), ((0.4, 1), 1), ((0, 2), 0)].

(b) Implémenter une nouvelle version de liste_voisins partant d’une liste vide et y insérant
chaque élémennt de Ltrain. Une fois que la liste produite aura atteint une longueur de
k, on enlevera après chaque insertion son élément maximal avec la fonction pop().

2. Déterminer la complexité des deux implémentations de Liste_voisins, en fonction de k et
de la longueur n de Ltrain. On supposera que la fonction distance est en O(1), et que la
fonction sorted est en O(n log n).

3. Concevoir et implémenter une version de knn attribuant à un voison de p d’autant plus de
votes qu’il est proche de p.

	Implémentation de knn
	Test sur la reconnaissance de chiffre
	Test sur une nouvelle image
	Variantes

