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Ondes sonores

Applications directes du cours

1 Calculer la valeur de la vitesse du son dans l’air à T = 0oC et à T = 80oC.

2 Deux ondes sonores, l’une dans l’air et l’autre dans l’eau, ont même intensité.

1. Quel est le rapport de l’amplitude de pression de l’onde dans l’eau à celle de l’onde dans l’air.

2. Quel est le rapport de leurs intensités si leurs amplitudes de pression sont égales ?

Données : masses volumiques : µair = 1, 3 kg.m−3 ; µeau = 1, 0 · 103 kg.m−3 ; coefficient de compressibilité
isentropique : χs,eau = 5, 0 · 10−10 Pa−1 ; χs,air = 1, 4 · 10−5 Pa−1.

3 Une onde acoustique plane et harmonique a une fréquence f = 500 Hz et une amplitude de déplacement
ξmax = 10 nm dans l’air à T = 293 K, p0 = 1, 0 bar, M = 29 g.mol−1.

1. Écrire l’expression de l’onde de déplacement ξ(x, t) puis celle de l’onde de pression p1(x, t) correspondante.

2. Tracer sur le même graphe ξ(x, t) et p1(x, t) à t fixé.

3. Calculer le niveau sonore en dB.

4 Si l’amplitude d’une onde sonore est triplée, de combien de décibels l’intensité sonore augmente-t-elle ?
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Exercices

1. Propagation dans un tuyau cylindrique

On considère un fluide de masse volumique µ0 au repos dans un tuyau cylindrique de section S constante. Une onde
acoustique longitudinale se propage le long de l’axe (Ox) du tuyau. On suppose le rayon R du tuyau petit devant la
longueur d’onde ce qui permet de supposer que toutes les grandeurs sont uniformes sur la section du tube. La tranche
de fluide qui se trouve entre les plans x et x+dx au repos se trouve entre les tranches x+ξ(x, t) et x+dx+ξ(x+dx, t)
en présence de l’onde acoustique.

1. À l’aide de la conservation de la masse sur cette tranche de fluide, établir une relation entre µ0, µ(x, t) (masse

volumique en présence de l’onde) et
∂ ξ

∂ x
.

2. Par un bilan de forces pressantes sur ce système, en déduire l’équation de propagation de l’onde acoustique dans
le tuyau. Le coefficient de compressibilité χs est donné.

2. Célérité dans le modèle du gaz parfait

On donne la célérité des ondes acoustiques dans les fluides : c =
1

√
µ0χS

. L’air est assimilé à un gaz parfait de masse

molaire M , de coefficient adiabatique γ = CP /CV à température T .

1. Rappeler la loi de Laplace qui relie p et V d’un gaz parfait lors d’une transformation isentropique. En déduire
que Pρ−γ = cte.

1



TDOndes2 Ondes sonores PC* 2025-2026

2. En déduire que χS =
1

γp
pour un gaz parfait puisque c =

√
γRT

M
.

3. AN à température ambiante dans l’air (M = 29 g/mol, γ = 1, 4).

3. Tuyau d’orgue

On considère un tuyau d’orgue rempli d’air de masse volumique µ0. On note p1 la surpression acoustique et u1 la
vitesse particulaire. La célérité du son est notée c. L’extrémité est fermée en x = 0 et ouverte en x = L. On cherche
p1(x, t) sous la forme d’ondes stationnaires :

p1(x, t) = p0 cos(ωt) cos(kx+ ϕ)

1. Déterminer la vitesse particulaire en fonction de p0, µ0, c, ω, k, x et ϕ.

2. Déterminer la fréquence f0 du fondamental et les fréquences des harmoniques fn, avec n entier.

3. Déterminer la position des nœuds et des ventres de surpression acoustique pour f0 et f1.

4. L’amplitude maximale du déplacement des particules est ξm = 0, 4 mm. En déduire l’amplitude maximale p0 de
la surpression acoustique pour la fréquence f0.
Application numérique : µ0 = 1, 3 kg.m−3 ; c = 340 m.s−1 ; L = 60 cm.

4. Valeurs des paramètres d’une onde sphérique

Considérons une source sonore de petite dimension émettant une onde acoustique sphérique harmonique intense
de fréquence f = 1 kHz et de puissance P = 1 kW. L’air est assimilé à un gaz parfait de coefficient adiabatique
γ = 1, 4, masse volumique au repos ρ0 et compressibilité adiabatique χS = 1/(γp0). On donne l’expression de la

surpression p1(r, t) = (A/r) cos(ωt − kr), le vecteur de Poynting moyen ⟨
−→
R ⟩ =

A2

2ρ0cr2
−→ur et la densité volumique

d’énergie e =
1

2
ρ0v

2 +
1

2
χSp

2.

Donner l’expression littérale puis AN des grandeurs suivantes à distance d = 10 m de la source :

1. La puissance surfacique moyenne ⟨R⟩.
2. L’intensité acoustique en décibel IdB.

3. L’amplitude p1m de surpression.

4. L’amplitude v1m de vitesse.

5. Le déphasage Φ entre surpression et vitesse.

6. La densité volumique d’énergie moyenne.

5. Isolation phonique

Pour étudier l’atténuation sonore introduite par un mur, on adopte le modèle suivant : dans un tuyau de section S,
une onde sonore incidente plane progressive harmonique de pulsation ω arrive sur un piston de surface S, d’épaisseur
e et de masse volumique µ, libre de se déplacer au voisinage de x = 0. On cherche un champ des vitesses de la forme{

v1(x < 0, t) = A1e
j(ωt−kx) +B1e

j(ωt+kx)

v2(x > e, t) = A2e
j(ωt−kx+ke)

1. Justifier cette forme et écrire les surpressions p
1
(x, t) et p

2
(x, t) correspondantes.

2. Écrire les conditions aux limites sur le piston indéformable et en déduire que :

A2

A1
=

(
1 +

jωµe

2µ0c

)−1

3. En déduire le coefficient de transmission T en puissance du mur. On donne µ0 = 1, 3 kg.m−3 ; µ = 2.103 kg.m−3

et c = 340 m.s−1. Quelle doit être l’épaisseur minimale du mur si on veut une atténuation d’au moins -40 décibels
pour f = 1 kHz ? et pour f = 100 Hz ?
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6. Propagation des ondes sonores dans un pavillon

Un pavillon est un tuyau dont la section varie régulièrement. Soit S(x) la section à l’abscisse x d’un pavillon d’axe
de symétrie (Ox). On suppose que l’écoulement de l’air, de masse volumique µ0, est unidimensionnel de direction x :
−→v1 = v1(x, t)

−→ex. On se place dans l’approximation acoustique.

1. Traduire la conservation de la matière pour obtenir :

µ0
∂ (Sv1)

∂ x
+ S

∂ µ1

∂ t
= 0

2. Écrire l’équation thermodynamique et l’équation d’Euler.

3. En déduire l’équation de propagation dans le pavillon est :

∂2 p1
∂ x2

+
S′

S

∂ p1
∂ x

− 1

c2
∂2 p1
∂ t2

= 0

où S′ désigne la dérivée de S par rapportà x.

4. Pour un pavillon exponentiel S(x) = S0 exp(2βx), établir la relation de dispersion de l’équation de propagation.

5. Montrer qu’il n’y a propagation que si ω est supérieure à une pulsation de coupure à préciser.

7. Fréquences propres d’une sphère rigide

On cherche à étudier les modes propres de vibration à l’intérieur d’une sphère rigide de rayon R. On écrit la
surpression sous la forme :

p(r, t) =
A

r
ei(ωt−kr) +

B

r
ei(ωt+kr)

Pour une fonction f(r) ne dépendant que de la coordonnée sphérique r, on donne le laplacien ∆f =
1

r

∂2 (rf)

∂ r2
.

1. Justifier cette expression et écrire le champ des vitesses.

2. Quelles sont les conditions aux limites ? Déterminer l’équation vérifiée par les fréquences propres.

3. Donner une valeur numérique approchée de la plus basse de ces fréquences. Effectuer l’application numérique
pour R = 5, 0 cm.

8. Couche sonore anti-reflet

1. Les impédances caractéristiques des tissus musculaires et de l’air pour les ultrasons valent :

Za = 4, 0 · 102usi et Zm = 1, 7 · 106usi

Calculer le coefficient de transmission des puissances sonores à une interface air-muscle et commenter.

2. Pour supprimer l’onde réfléchie dans l’air, on réalise une couche anti-reflet d’épaisseur e en graisse, d’impédance

Zg. On note ca, cg et cm les célérités du son dans chacun des trois milieux, et on pose ki =
ω

ci
avec i = a,m, g.

On cherche alors, en notation complexe, des champs de vitesses dans les trois milieux de la forme (l’air occupe
le demi-espace x < 0, la graisse la couche 0 < x < e et le muscle le demi espace x > e) :

v(x < 0) = Aa exp[j(ωt− kax)] , v(x > e) = Am exp[j(ωt− kmx)]

v(0 < x < e) = exp(jωt)[Ag exp(−jkgx) +Bg exp(+jkgx)]

(a) Faire un schéma pour illustrer la situation.

(b) Quelle est la forme correspondante du champ des surpressions acoustiques dans les trois milieux ? Écrire les
conditions aux limites.

(c) Une élimination non demandée donne la condition :

Zg − Za

Zg + Za
=

(
Zg − Zm

Zg + Zm

)
exp(−2jkge)

Vérifier sa pertinence sur un cas particulier. Déterminer les valeurs convenables de e et Zg.
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