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Ondes sonores

Applications directes du cours

Calculer la valeur de la vitesse du son dans 'air & T'= 0°C et & T' = 80°C.

Deux ondes sonores, I'une dans lair et I’autre dans I’eau, ont méme intensité.
1. Quel est le rapport de 'amplitude de pression de ’onde dans I’eau a celle de 'onde dans air.
2. Quel est le rapport de leurs intensités si leurs amplitudes de pression sont égales ?
Données : masses volumiques : figir = 1,3 kgm™3; ptequ = 1,0 - 10 kg.m ™3 ; coefficient de compressibilité
isentropique : X5 cqu = 5,0- 10710 Pa™b; x4 = 1,4-107° Pa™l.

Une onde acoustique plane et harmonique a une fréquence f = 500 Hz et une amplitude de déplacement
Emaz = 10 nm dans Pair & T = 293 K, pg = 1,0 bar, M = 29 g.mol .
1. Ecrire lexpression de 'onde de déplacement £(z,t) puis celle de I'onde de pression p;(x,t) correspondante.
2. Tracer sur le méme graphe £(x,t) et py(x,t) & t fixé.
3. Calculer le niveau sonore en dB.

Si 'amplitude d’une onde sonore est triplée, de combien de décibels I'intensité sonore augmente-t-elle ?

[1]e= /22T co =331 ms™"; cgo = 376 m.s 1. [2] 1. Zem = (M)(W; Do — 68, 2, Lo = 4,6.10% [3] 1.

HairXs,eau

&(x,t) = Emaw cos(2m ft —kx+ ) ; p1(x,t) = procos(2n ft —kx + o+ g) avec p1p = WE%ﬂ/IZWffma:c. 2.3. I =8 dB.

Exercices

1. Propagation dans un tuyau cylindrique

On considere un fluide de masse volumique o au repos dans un tuyau cylindrique de section S constante. Une onde
acoustique longitudinale se propage le long de ’axe (Ox) du tuyau. On suppose le rayon R du tuyau petit devant la
longueur d’onde ce qui permet de supposer que toutes les grandeurs sont uniformes sur la section du tube. La tranche
de fluide qui se trouve entre les plans x et x 4+ dx au repos se trouve entre les tranches x +&(x, t) et ©+dx +&(x + dx, t)
en présence de I'onde acoustique.

1. A laide de la conservation de la masse sur cette tranche de fluide, établir une relation entre s, p(z,t) (masse

0
volumique en présence de 'onde) et —5

ox

2. Par un bilan de forces pressantes sur ce systeme, en déduire I’équation de propagation de I'onde acoustique dans
le tuyau. Le coefficient de compressibilité y, est donné.

2. Célérité dans le modele du gaz parfait

On donne la célérité des ondes acoustiques dans les fluides : ¢ =

1
. L’air est assimilé a un gaz parfait de masse
VHoXsS

molaire M, de coefficient adiabatique v = Cp/Cy a température T'.

1. Rappeler la loi de Laplace qui relie p et V' d’un gaz parfait lors d’une transformation isentropique. En déduire
que Pp~7 = cte.
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1 [vYRT
2. En déduire que yg = — pour un gaz parfait puisque ¢ = ’YW
P

3. AN a température ambiante dans l'air (M = 29 g/mol, v = 1,4).

3. Tuyau d’orgue

On considere un tuyau d’orgue rempli d’air de masse volumique pg. On note p; la surpression acoustique et u; la
vitesse particulaire. La célérité du son est notée c. L’extrémité est fermée en x = 0 et ouverte en x = L. On cherche
p1(z,t) sous la forme d’ondes stationnaires :

p1(x,t) = po cos(wt) cos(kx + @)

. Déterminer la vitesse particulaire en fonction de pg, po, ¢, w, k, x et ¢.
. Déterminer la fréquence fy du fondamental et les fréquences des harmoniques f,, avec n entier.
. Déterminer la position des nceuds et des ventres de surpression acoustique pour fy et fi.

=W N

. ’amplitude maximale du déplacement des particules est &,, = 0,4 mm. En déduire 'amplitude maximale py de
la surpression acoustique pour la fréquence fjy.
Application numérique : o = 1,3 kem™3; ¢ =340 m.s™'; L = 60 cm.

4. Valeurs des parametres d’une onde sphérique

Considérons une source sonore de petite dimension émettant une onde acoustique sphérique harmonique intense
de fréquence f = 1 kHz et de puissance P = 1 kW. L’air est assimilé a un gaz parfait de coefficient adiabatique
v = 1,4, masse volumique au repos py et compressibilité adiabatique ys = 1/(ypo). On donne l’expression de la

2

surpression pi(r,t) = (A/r)cos(wt — kr), le vecteur de Poynting moyen (ﬁ> = ;. et la densité volumique

2ppcr?
. 1 1
d’énergie e = §povz + §XSP2-
Donner I'expression littérale puis AN des grandeurs suivantes a distance d = 10 m de la source :
. La puissance surfacique moyenne (R).
. L’intensité acoustique en décibel I4g.
. L’amplitude pq,, de surpression.
L’amplitude vy,, de vitesse.
. Le déphasage ® entre surpression et vitesse.

S N N N

. La densité volumique d’énergie moyenne.

5. Isolation phonique

Pour étudier 'atténuation sonore introduite par un mur, on adopte le modele suivant : dans un tuyau de section .5,
une onde sonore incidente plane progressive harmonique de pulsation w arrive sur un piston de surface S, d’épaisseur
e et de masse volumique p, libre de se déplacer au voisinage de = 0. On cherche un champ des vitesses de la forme

v, (l‘ < O,t) _ Alej(wt—k:c) _|_§lej(wt+k;c)
QQ(Z‘ > e,t) — A2ej(wt—km+ke)

1. Justifier cette forme et écrire les surpressions p (,t) et p,(z,t) correspondantes.

2. Ecrire les conditions aux limites sur le piston indéformable et en déduire que :

é _ (14 Jwpe -1
A1 2/1,06
3. En déduire le coefficient de transmission 7" en puissance du mur. On donne pg = 1,3 kg.m =3 ; u = 2.10% kg.m =3

et ¢ = 340 m.s~ L. Quelle doit étre I’épaisseur minimale du mur si on veut une atténuation d’au moins -40 décibels
pour f =1kHz? et pour f =100 Hz?
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6. Propagation des ondes sonores dans un pavillon

Un pavillon est un tuyau dont la section varie régulierement. Soit S(x) la section a 'abscisse  d’un pavillon d’axe
de symétrie (Ox). On suppose que 1’écoulement de lair, de masse volumique o, est unidimensionnel de direction z :
= vy (z, t)e_g. On se place dans 'approximation acoustique.

1. Traduire la conservation de la matiere pour obtenir :

0 (Sv1) 0 iy
s 9%

=0

2. Ecrire I’équation thermodynamique et 1’équation d’Euler.
3. En déduire I'équation de propagation dans le pavillon est :

P?pr Sopr 10°m

0x? S 0z 2 0t?

ou S’ désigne la dérivée de S par rapporta .

=0

4. Pour un pavillon exponentiel S(x) = Sy exp(28z), établir la relation de dispersion de I’équation de propagation.
5. Montrer qu’il n’y a propagation que si w est supérieure a une pulsation de coupure a préciser.

7. Fréquences propres d’une sphere rigide

On cherche a étudier les modes propres de vibration a lintérieur d’une sphere rigide de rayon R. On écrit la
surpression sous la forme :

A . B .
p(?”, t) = fez(wt—kr) + fez(wt"'kr)

1% (rf)

Pour une fonction f(r) ne dépendant que de la coordonnée sphérique r, on donne le laplacien Af = — 9,2
r or

1. Justifier cette expression et écrire le champ des vitesses.
2. Quelles sont les conditions aux limites 7 Déterminer ’équation vérifiée par les fréquences propres.

3. Donner une valeur numérique approchée de la plus basse de ces fréquences. Effectuer I’application numérique
pour R = 5,0 cm.

8. Couche sonore anti-reflet

1. Les impédances caractéristiques des tissus musculaires et de ’air pour les ultrasons valent :
Z,=4,0-10%usi et Z,, =1,7-10%usi
Calculer le coefficient de transmission des puissances sonores & une interface air-muscle et commenter.

2. Pour supprimer 'onde réfléchie dans ’air, on réalise une couche anti-reflet d’épaisseur e en graisse, d’'impédance
12y s . - w .
Zg. On note cq, ¢4 et ¢, les célérités du son dans chacun des trois milieux, et on pose k; = — avec i = a,m, g.

i
On cherche alors, en notation complexe, des champs de vitesses dans les trois milieux de la forme (I’air occupe
le demi-espace z < 0, la graisse la couche 0 < z < e et le muscle le demi espace x > e) :

v(z < 0) = Agexplj(wt — ko] , v(z > €) = Ay, exp[j(wt — k)]
v(0 <z <e) = exp(jwt)[Ag exp(—jkgx) + By exp(+jkgz)]

(a) Faire un schéma pour illustrer la situation.

(b) Quelle est la forme correspondante du champ des surpressions acoustiques dans les trois milieux ? Ecrire les
conditions aux limites.

(¢) Une élimination non demandée donne la condition :

Zy—Zy [ Zg—Zm
Zy+Za \Zg+ Znm

) exp(—2jkge)

Vérifier sa pertinence sur un cas particulier. Déterminer les valeurs convenables de e et Z,.



