
TH02 Diffusion de particules
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�
�Diffusion de particules

L’équilibre thermodynamique d’un système isolé suppose l’uniformité de tous ses paramètres intensifs dans
l’espace et le temps. Quand les paramètres intensifs varient dans le milieu d’un point à un autre et/ou
au cours du temps, le système est hors équilibre thermodynamique. Il apparâıt alors des phénomènes de
transport, qui tendent à rétablir l’équilibre. La diffusion de particules que nous étudions ici est un exemple
de ces phénomènes de transport.

Vidéo : Diffusion dans des gaz

Expérience.

I Modélisation du transport de particules

I.1 Les différents modes de transport

I.2 Flux de particules

On considère un milieu matériel immobile dans lequel se trouvent des particules qui diffusent.
La densité particulaire n est définie par δN = ndτ où δN est le nombre de particules contenues dans le
volume dτ .
n est en m−3.

On définit le flux élémentaire de particules dΦdS à travers une surface élémentaire orientée
−→
dS comme

le débit de particules à travers cette surface (nombre de particules qui traversent dS par unité de temps.

dΦdS =
δ2N

dt

δ2N est le nombre de particules qui traversent dS durant dt.

δ2N est postif si les particules traversent dS dans le sens de
−→
dS.

I.3 Vecteur densité de courant de particules

On appelle vecteur densité de courant de particules le vecteur
−→
jN qui est tel que le flux de

−→
jN à travers

une surface orientée est égale au flux de particules à travers cette surface :

ΦS(t) =

¨

M∈S

−→
jN (M, t) · −−→dSM

Pour une surface élémentaire orientée
−→
dSM centrée sur M , le nombre de particules δ2N qui traversent cette

surface entre t et t+ dt est
δ2N =

−→
jN (M, t) · −→dSM dt

II Bilan de particules

Principe : pour un système élémentaire ouvert fixe Σo, nous allons faire un bilan de particules entre les
instants t et t+ dt du type :
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N(t+ dt)−N(t) = +δNentrant − δNsortant + δNproduit − δNdetruit

La variation de la grandeur extensive N entre t et t + dt est égale à la somme des particules échangées et
des particules créées.

II.1 Bilan local pour un transport unidimensionnel, unidirectionnel

Bilan local de particules (savoir l’établir) :

�

�

�

�
∂ n(x, t)

∂ t
+
∂ jN (x, t)

∂ x
=

 0 en l’absence de sources

p(x, t) avec un taux production p algébrique

p(x, t) = taux de production = nombre algébrique de particules produites (ou absorbées) par unité de temps
et de volume.

II.2 Bilan en repère cylindrique

a Rappel : le repère cylindrique

x

y

z

O

~ex

~ez
~ey

b

b

b

M

H1

H2
~eθ

~er

~ez

θ

r

Le repère cylindrique : (O;~er;~eθ;~ez)

Les coordonnées du point M : (r, θ, z)

Coordonnées :


r ∈ [0; +∞[

θ ∈ [0; 2π]

z ∈ ]−∞; +∞[
Vecteur position :

−−→
OM = r ~er + z ~ez

Déplacement élémentaire :

d
−−→
OM = dr ~er + rdθ ~eθ + dz ~ez

b Bilan particulaire

Bilan local de particules pour un problème à symétrie cylindrique (savoir l’établir) :

�

�

�

�
∂ n(r, t)

∂ t
+

1

r

∂ (rjN (r, t))

∂ r
=

 0 en l’absence de sources

p(r, t) avec un taux production p algébrique
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II.3 Bilan en repère sphérique

a Rappel : le repère sphérique
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Le repère sphérique : (O;~er;~eθ;~eϕ)

Les coordonnées du point M : (r, θ, ϕ)

Coordonnées :


r ∈ [0; +∞[

θ ∈ [0;π]

ϕ ∈ [0; 2π[

Vecteur position :

−−→
OM = r ~er

Déplacement élémentaire :

d
−−→
OM = dr ~er + rdθ ~eθ + r sin θdϕ~eϕ

b Bilan particulaire

Bilan local de particules pour un problème à symétrie sphérique (savoir l’établir) :

�

�

�

�
∂ n(r, t)

∂ t
+

1

r2
∂ r2jN (r, t)

∂ r
=

 0 en l’absence de sources

p(r, t) avec un taux production p algébrique

II.4 Généralisation

a Divergence d’un champ de vecteurs

L’opérateur divergence transforme un champ de vecteurs −→a (M) en un champ de scalaire s(M).

div (−→a (M)) = lim
dτM→ 0

dΦ(M)

dτM

où dΦ(M) est le flux de −→a sortant de la surface fermée entourant dτM .
div (−→a ) est une densité volumique de flux.

Théorème d’Ostrogradski : ˚

M∈V

div (~a(M))dτ =

‹

M∈S

−→a (M) · −→n dSM

avec ~n normale sortante, S enveloppe de V .

Expression de l’opérateur divergence en coordonnées cartésiennes

div−→a =
∂ ax
∂ x

+
∂ ay
∂ y

+
∂ az
∂ z
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Expression de l’opérateur divergence en coordonnées cylindriques

div−→a =
1

r

∂ r ar
∂ r

+
1

r

∂ aθ
∂ θ

+
∂ az
∂ z

Expression de l’opérateur divergnece en coordonnées sphériques

div−→a =
1

r2
∂ r2 ar
∂ r

+
1

r sin θ

∂ sin θ aθ
∂ θ

+
1

r sin θ

∂ aϕ
∂ ϕ

b Équation de bilan local ou équation de continuité�
�

�
�

∂ n

∂ t
+ div~j = 0 en l’absence de production

II.5 Bilan global en l’absence de création ou d’annihilation

˚

M∈V

∂ n(M, t)

∂ t
dτM = −

‹

M∈S

~j(M) · ~n dSM

avec ~n normale sortante, S enveloppe de V .

III Équation de diffusion

III.1 Loi de Fick

a Loi phénoménologique

�

�

�

�
−→
jN = −D−−→gradn

D = coefficient de diffusion en m2 · s−1.

b Opérateur gradient

L’opérateur gradient transforme un champ de scalaires U(M) en champ de vecteurs :
−→
A = −−−→grad (U)

Soit U un champ scalaire et dU sa différentielle :

dU =
−−→
gradU(M) · d−−→OM

avec d
−−→
OM déplacement élémentaire.

Expression en coordonnées cartésiennes

−−→
gradU =

∂ U

∂ x
−→e x +

∂ U

∂ y
−→e y +

∂ U

∂ z
−→e z

Expression en coordonnées cylindriques

−−→
gradU =

∂ U

∂ r
−→e r +

1

r

∂ U

∂ θ
−→e θ +

∂ U

∂ z
−→e z
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Expression en coordonnées sphériques

−−→
gradU =

∂ U

∂ r
−→e r +

1

r

∂ U

∂ θ
−→e θ +

1

r sin θ

∂ U

∂ ϕ
−→e ϕ

c Ordres de grandeurs

Coefficient de diffusion dans l’air
p = 1, 0 bar et T = 25 oC

Gaz D en m2·s−1

H2 6, 3 · 10−5

H2O 2.8 · 10−5

O2 1, 8 · 10−5

CO2 1, 4 · 10−5

Coefficient de diffusion dans l’eau

Soluté D en m2·s−1

H2O 2, 0 · 10−9

CO2 2, 0 · 10−9

O2 2, 1 · 10−9

NH3 1, 6 · 10−9

glucose 0, 5 · 10−9

Coefficient de diffusion dans les solides :
H dans le fer : D = 2 · 10−13 m2·s−1
Al dans le cuivre : D = 1, 3 · 10−30 m2·s−1

III.2 Équation de diffusion

a Diffusion à 1 dimension'

&

$

%

∂ n

∂ t
= D

∂2 n

∂ x2
en l’absence de production

∂ n

∂ t
= D

∂2 n

∂ x2
+ p avec un taux production p

b Généralisation (sans création ni annihilation)�
�

�
�Équation de diffusion particulaire :

∂ n

∂ t
= D∆n

L’opérateur laplacien scalaire ∆ transforme un champ scalaire en champ scalaire :�
�

�

∆U = div

(−−→
grad (U)

)
Expression en coordonnées cartésiennes

∆U =
∂2 U

∂ x2
+
∂2 U

∂ y2
+
∂2 U

∂ z2
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IV Analyse de l’équation de diffusion ; solutions

IV.1 Considérations générales

IV.2 Ordres de grandeurs

L longueur caractéristique des variations de n, τ temps caractéristique des variations de n et D coefficient
de diffusion.

L2 ' Dτ

IV.3 Cas du régime stationnaire

En l’absence de sources internes il y a conservation du flux de particules :

‹

M∈S

~j(M) · ~n dSM = 0

Pour une surface fermée, le flux de particule entrant est égal au flux sortant.
Localement :

div~j = 0

IV.4 Un exemple non stationnaire
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V Approche microscopique

V.1 Modèle de marche aléatoire 1D

D ' ul?
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V.2 Résultats numériques

Probabilités de présence après 10, 20, 50, 80, 100 et 200 pas
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Programme python :

import matp lo t l i b . pyplot as p l t
import numpy as np
from s c ipy . s p e c i a l import binom

# number o f p a r t i c l e s
n par t s = 10000

# array f o r p a r t i c l e p o s i t i o n
p o s i p a r t c u r r e n t = np . z e ro s ( n parts , dtype=f loat )
p o s i p a r t o l d = np . z e ro s ( n parts , dtype=f loat )

# number o f time s t e p s
n t s t e p s = 200

# s i z e o f d i s c r e t e time s t ep
d e l t a t = 1 .

for i p a r t in range ( n par t s ) :
for i s t e p in range ( n t s t e p s ) :

nombre = np . random . normal ( l o c =0. , s c a l e =1.)
i f nombre > 0 :

p o s i p a r t c u r r e n t [ i p a r t ] = p o s i p a r t o l d [ i p a r t ] + 1 .
e l i f nombre <0:

p o s i p a r t c u r r e n t [ i p a r t ] = p o s i p a r t o l d [ i p a r t ] − 1 .
p o s i p a r t o l d [ i p a r t ] = p o s i p a r t c u r r e n t [ i p a r t ]

#pr in t ( p o s i p a r t c u r r e n t )

npos i = 2 * n t s t e p s + 1
pd f th eo r i q ue = np . z e r o s ( npos i )
x = np . z e ro s ( nposi , dtype=int )
mask = np . z e ro s ( nposi , dtype=f loat )
for i p o s i in range ( npos i ) :

x [ i p o s i ] = −1 * n t s t e p s + i p o s i
pd f th eo r i q ue [ i p o s i ] = binom ( n t s t eps , ( n t s t e p s −

np . abs ( x [ i p o s i ] ) ) /2) / ( 2 .** ( n t s t e p s ) )
i f np . mod( n t s t eps , 2) == 0 :

i f np . mod( i p o s i , 2) == 0 :
mask [ i p o s i ] = 1 .

i f np . mod( n t s t eps , 2) == 1 :
i f np . mod( i p o s i , 2) == 0 :

mask [ i p o s i ] = 1 .

print ( x )
print ( pd f th eo r i q ue * mask)
xfake = np . append (x , n t s t e p s +1)
p l t . h i s t ( p o s i p a r t c u r r e n t , b ins=xfake , dens i ty = True , a l i g n=” l e f t ” ,

l a b e l=”marche a l \ ’ e a t o i r e ” )
p l t . p l o t (x , pd f th eo r i q ue * mask , l i n e s t y l e=’None ’ , marker=’ o ’ , l a b e l=” l o i

b inomia le ” )
p l t . x l a b e l ( ’ p o s i t i o n ’ )
p l t . y l a b e l ( ’ p r o b a b i l i t \ ’ e ’ )
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p l t . xl im (−25 ,25)
p l t . yl im ( 0 , 0 . 3 )
p l t . l egend ( l o c=” best ” )
#p l t . pause (0 .01 )
p l t . s a v e f i g ( ” f i g s i m u l 2 0 0 . pdf ” )
p l t . show ( )
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