THO02 Diffusion de particules

[Diﬂ:usion de particules

L’équilibre thermodynamique d’un systeme isolé suppose I'uniformité de tous ses parametres intensifs dans
I'espace et le temps. Quand les parameétres intensifs varient dans le milieu d’un point & un autre et/ou
au cours du temps, le systeme est hors équilibre thermodynamique. Il apparait alors des phénomenes de
transport, qui tendent a rétablir I’équilibre. La diffusion de particules que nous étudions ici est un exemple
de ces phénomenes de transport.

Vidéo : Diffusion dans des gaz

Expérience.

I Modélisation du transport de particules

I.1 Les différents modes de transport
1.2 Flux de particules

On considere un milieu matériel immobile dans lequel se trouvent des particules qui diffusent.

La densité particulaire n est définie par 6 N = ndr ou 6N est le nombre de particules contenues dans le
volume dr.

n est en m~S.

On définit le flux élémentaire de particules d®4g a travers une surface élémentaire orientée (ﬁ comme
le débit de particules & travers cette surface (nombre de particules qui traversent dS par unité de temps.

02N
dPyg = ——
ds dt

82N est le nombre de particules qui traversent dS durant dt.
82N est postif si les particules traversent dS dans le sens de @ .

I.3 Vecteur densité de courant de particules

On appelle vecteur densité de courant de particules le vecteur jy qui est tel que le flux de jn a travers
une surface orientée est égale au flux de particules a travers cette surface :

Bs(t) = [| jnN(M,t)-dSy

Pour une surface élémentaire orientée (ﬁ u centrée sur M, le nombre de particules 62N qui traversent cette
surface entre ¢ et t 4+ dt est N
62N = jn(M,t) (ﬁM dt

II Bilan de particules

Principe : pour un systeme élémentaire ouvert fixe ¥,, nous allons faire un bilan de particules entre les
instants ¢ et ¢t + dt du type :


https://www.youtube.com/watch?v=H7QsDs8ZRMI&feature=related
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N(t + dt) - N(t) - +6Nentrant - 5Nsortant + 5Nproduit - 5~]Vdret1rui‘c

La variation de la grandeur extensive N entre ¢ et ¢t 4+ d¢ est égale a la somme des particules échangées et
des particules créées.

I1.1 Bilan local pour un transport unidimensionnel, unidirectionnel

Bilan local de particules (savoir ’établir) :

on(z,t)  Jjn(z,t) 0 en ’absence de sources

at Oz p(z,t) avec un taux production p algébrique

p(z,t) = taux de production = nombre algébrique de particules produites (ou absorbées) par unité de temps
et de volume.

I1.2 Bilan en repére cylindrique

a Rappel : le repére cylindrique

Le repere cylindrique : (O; €,; €p; €>)

2
s g, Les coordonnées du point M : (r,0, 2)

€y

A r € [0; 4o00]
€r Coordonnées : ¢ 6 € [0; 27]
z € |—00; +00]
et Vecteur position :
€ s

o) 4 ’ OM =ré .+ zé,

Er
/ ¢ H, Déplacement élémentaire :
T

dOM = dré, +rdf &y +dzé.

b Bilan particulaire

Bilan local de particules pour un probleme a symétrie cylindrique (savoir 1’établir) :

on(r,t) 19 (rjn(r,t)) 0 en 'absence de sources

ot r ar p(r,t) avec un taux production p algébrique
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I1.3 Bilan en repére sphérique

a Rappel : le repéere sphérique

% Le repere sphérique : (O; é€; €p; €,)
Hy
Les coordonnées du point M : (r,0,¢)

- r € [0; +00]

(') g, Coordonnées : ¢ 6 € [0; 7]

A ! v ¢ € [0; 27
Hy ..
y Vecteur position :

e
OM =ré,
Déplacement élémentaire :
—
dOM = dr €, + rdf g + rsinOdyp €,
b Bilan particulaire

Bilan local de particules pour un probleme & symétrie sphérique (savoir ’établir) :

on(rit) 10 r2in(r,t) 0 en ’absence de sources

2
at r ar p(r,t) avec un taux production p algébrique

I1.4 Généralisation
a Divergence d’un champ de vecteurs

L’opérateur divergence transforme un champ de vecteurs 7(]\/[ ) en un champ de scalaire s(M).

dd(M)

div (2 (M) = dmifg 0 dry

ou d®(M) est le flux de @ sortant de la surface fermée entourant dry;.
div (@) est une densité volumique de flux.

/ﬂ div (@(M))dr = # a (M) -7 dSy

Mev Mey

Théoreme d’Ostrogradski :

avec 77 normale sortante, . enveloppe de 7.

Expression de 'opérateur divergence en coordonnées cartésiennes

da, 0Oay Oa,
=524+ 2Ly

L=
dived = ox oy dz
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Expression de l'opérateur divergence en coordonnées cylindriques

10ra 10a da
- T + 0 z
dlva_r or +7’80+8z

Expression de I'opérateur divergnece en coordonnées sphériques

1 0r%a, 1 OJsinfay 1 Qay,

e
diva r2 Or +rsin9 06 +rsin€ [o)%)

b Equation de bilan local ou équation de continuité

an

ot

+ divj =0 en 'absence de production

I1.5 Bilan global en ’absence de création ou d’annihilation

///a”(a]‘f’t)dwz— # (M) it dSiy

Mev Mes

avec 7 normale sortante, . enveloppe de 7.

111 Equation de diffusion

III.1 Loi de Fick

a Loi phénoménologique

— —
jN = —Dgradn

D = coefficient de diffusion en m?2 - s~ 1.

b Opérateur gradient

—
L’opérateur gradient transforme un champ de scalaires U(M) en champ de vecteurs : X = —grad (U)

Soit U un champ scalaire et dU sa différentielle :

AU = grad U(M) - dOM

s
avec dOM déplacement élémentaire.

Expression en coordonnées cartésiennes

—
gradU = — €, + —

Expression en coordonnées cylindriques
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Expression en coordonnées sphériques

—é oU _ 10U 1 o0U_

U=—%¢€,+-— —

st (97’6 +7’ 8969+rsin98goe@

¢ Ordres de grandeurs

Coefficient de diffusion dans 1’air Coefficient de diffusion dans I’eau
= 1,0 bar et T'=25 °C
P e Soluté | D en m?.s7!

Gaz | D en m?s~! H,O 2,0-1079
Hy, | 6,3-107° CO, | 2,0-107°
H,O | 2.8.107° 0, 2,1-1079
O, | 1,8-107° NH, 1,6-107°
COy | 1,4-107° glucose | 0,5-107?

Coefficient de diffusion dans les solides :
H dans le fer : D =2-10713 m2.s71
Al dans le cuivre : D =1,3-10730 m?.s~!

I11.2 Equation de diffusion

a Diffusion a 1 dimension

on 0?n

— = D— en ’absence de production
ot 92 P

on _ pon, t ducti
— = — avec un taux production
ot gz2 " P P b

b Généralisation (sans création ni annihilation)

, on
Equation de diffusion particulaire : — = DAn

ot

L’opérateur laplacien scalaire A transforme un champ scalaire en champ scalaire :

[AU:dW(@EﬂUﬁJ

Expression en coordonnées cartésiennes

_PU U U
022 0y? 022

AU
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IV  Analyse de ’équation de diffusion ; solutions

IV.1 Considérations générales
IV.2 Ordres de grandeurs

L longueur caractéristique des variations de n, 7 temps caractéristique des variations de n et D coefficient
de diffusion.
L*~ Dr

IV.3 Cas du régime stationnaire

En 'absence de sources internes il y a conservation du flux de particules :

# J(M) -7t dSy =0

Meys

Pour une surface fermée, le flux de particule entrant est égal au flux sortant.

Localement :
divi=0
IV.4 Un exemple non stationnaire
V7 Sn(xt)
No

ADt = 1,4,9, 16,25
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V  Approche microscopique

V.1 Modéle de marche aléatoire 1D

D ~ ul*
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V.2 Résultats numériques

Probabilités de présence apres 10, 20, 50, 80, 100 et 200 pas
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Programme python :

import matplotlib.pyplot as plt
import numpy as np
from scipy.special import binom

# number of particles
n_parts = 10000

# array for particle position
posi_part_current = np.zeros( n_parts, dtype=float)
posi_part_old = np.zeros( n_parts, dtype=float)

# number of time steps
n_tsteps = 200

# size of discrete time step
delta_t = 1.

for ipart in range(n_parts):
for i_step in range(n_tsteps):
nombre = np.random.normal(loc=0., scale=1.)
if nombre > O0:
posi_part_current [ipart] = posi_part_old [ipart] + 1.
elif nombre <O0:
posi_part_current [ipart] = posi_part_old [ipart] — 1.
posi_part_old [ipart] = posi_part_current [ipart]

#print (posi_part_current)

nposi = 2 % n_tsteps + 1
pdf_theorique = np.zeros( nposi)

x = np.zeros( nposi, dtype=int)

mask = np.zeros( nposi, dtype=float)
for iposi in range(nposi):

x[iposi] = —1 % n_tsteps + iposi
pdf_theorique[iposi] = binom( n_tsteps, (n_tsteps —
np.abs(x[iposi]))/2)/ ( 2.x%*x(n_tsteps) )
if np.mod(n_tsteps, 2) = 0:
if np.mod( iposi, 2) = O0:
mask [iposi]| = 1.
if np.mod(n_tsteps, 2) = 1:
if np.mod( iposi, 2) = O0:
mask[iposi] = 1.

print (x)

print (pdf_theorique x mask)

xfake = np.append(x, n_tsteps+1)

plt.hist (posi_part_current , bins=xfake, density = True, align="1left”,
label="marche_al\’ ’eatoire”)

plt.plot(x, pdf_-theorique * mask, linestyle="None’, marker="0", label="10i.
binomiale” )

plt.xlabel (’position’)

plt.ylabel(’probabilit\’e”)
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plt.xlim (—25,25)

plt.ylim (0,0.3)

plt.legend (loc="best”)
#plt.pause (0.01)

plt.savefig (”fig_simul_200.pdf”)
plt .show ()
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