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I Généralités

I.1 Équilibre thermodynamique local

Soit Σ un système thermodynamique macroscopique. On peut découper ce système en volumes mésoscopiques
pouvant être considérés comme des systèmes à l’état d’équilibre.

I.2 Mécanismes de transfert thermique

a La conduction thermique

La conduction (ou diffusion) thermique est un mode de transport thermique sans déplacement macroscopique
de matière. Ce transfert s’effectue de proche en proche des parties chaudes vers les parties froides, grâce à
l’agitation thermique.

b La convection thermique

La convection est un mode de transfert thermique qui implique un déplacement collectif de fluide. La matière
fluide chaude, en se déplaçant, cède de l’énergie aux parties plus froides.

On distingue deux types de convection :
• La convection naturelle est induite lorsque c’est le gradient de température qui provoque le mou-

vement du fluide.
• La convection forcée est provoquée par une circulation artificielle d’un fluide.

c Le rayonnement

Le rayonnement décrit le transport d’énergie via la propagation d’onde électromagnétique. Ce transfert
d’énergie est toujours présent, même dans le vide.

II Flux thermique

II.1 Les grandeurs descriptives

La première grandeur à introduire est la densité volumique d’énergie interne u(M, t).

La seconde grandeur, le vecteur densité de courant thermique, est un vecteur
−→
jQ(M, t) ; elle décrit le transport

d’énergie thermique. Son flux à travers une surface S représente la puissance thermique traversant la surface,
également appelée flux thermique.
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II.2 Vecteur densité de courant thermique

Le vecteur densité de courant thermique
−→
jQ(M, t) est tel que le transfert thermique élémentaire δ2Q à travers

la surface élémentaire d
−→
SM entre les instants t et t+ dt s’écrit :

δ2Q =
−→
jQ · d

−→
SM dt

II.3 Flux thermique

Le flux thermique noté Φth désigne la puissance thermique qui traverse une surface.

a À travers une surface orientée S

Φth(t) =

¨

M∈S

−→
jQ(M, t) · d

−→
SM

b Pour un système fermé Σ avec S surface de contrôle

Entre t et t+ dt, le système Σ reçoit δQ tel que

δQ = Φth(t)dt = −
‹

M∈S

−→
jQ(M, t) · d

−→
SM dt

avec d
−→
SM = dSm

−→nM , normale sortante.

II.4 Loi de Fourier

Expérimentalement, si les variations de températures ne sont pas trop importantes, on rend compte locale-
ment des phénomènes de conduction de la chaleur par la loi de Fourier, à savoir le vecteur densité de flux
de chaleur

−→
jQ est égal à :

−→
jQ = −λ

−−→
gradT

λ est la conductivité thermique.

Milieu Air Eau Bois Verre Béton Brique

λ en W.m−1.K−1 0,03 0,6 0,3 1,2 0,92 0,84

Milieu Cuivre Aluminium Acier-Inox Laine de verre Polystyrène expansé

λ en W.m−1.K−1 390 237 26 0,03-0,04 0,036

2



TH03 Diffusion thermique

III Bilan thermique

III.1 Bilan local pour un transfert unidimensionnel

Milieu au repos

S
xT (x, t)

(x) (x+ dx)

•
−→ȷQ(x, t) •

−→ȷQ(x+ dx, t)

Bilan thermique local (savoir l’établir) :

#

"

 

!
ρc

∂ T (x, t)

∂ t
+

∂ jQ(x, t)

∂ x
=


0 en l’absence de sources

p(x, t) avec un taux production interne p

III.2 Bilan local en symétrie cylindrique

III.3 Bilan local en symétrie sphérique

III.4 Généralisation du bilan local

III.5 Équation de la diffusion thermique

ou équation de la chaleur, avec un terme de production local :�
�

�
�

∂ T

∂ t
=

λ

ρc
∆T +

p

ρc

En l’absence de terme de production :�
�

�
�

∂ T

∂ t
=

λ

ρc
∆T : équation de diffusion

IV Résolution de l’équation de la chaleur

IV.1 Généralités

Résoudre l’équation de la chaleur consiste à déterminer le champ de température en fonction du temps dans
un espace donné sachant que l’on connâıt les conditions initiales ainsi que les propriétés sur la frontière.

Dans la pratique on distingue différents cas.
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— Le système est en contact parfait avec un thermostat de température Text. À chaque instant on a la
condition aux limites

T (M, t) = Text ∀M ∈ S

— Le système est solide et présente une surface de contact avec un autre solide. Si le contact n’est pas
parfait, la température n’est pas continue. Cependant le flux thermique est continu.

−→
jQ(M, t) · −→n =

−−→
jQext · −→n ∀M ∈ S

— Le système est parfaitement calorifugé c’est-à-dire entouré d’une paroi adiabatique. Dans ce cas,

−→
jQ(M, t) · −→n = 0

— Le système présente une paroi en contact avec un fluide : la loi de Newton relative à la convection
impose alors une condition sur le flux thermique.
Loi de Newton : Au voisinage d’un solide de température de surface T , un fluide en mouvement à
la température Tfluide reçoit une densité de courant thermique

−→
jQ(M, t) = h (T (M, t)− Tfluide )−→n solide→fluide

où h désigne le coefficient de transfert thermique (en la normale dirigée vers l’extérieur de la surface
solide. Le coefficient h dépend surtout des propriétés de l’écoulement dans la couche limite située
entre le solide et le fluide.

IV.2 Cas du régime stationnaire en l’absence de source interne

a Conservation du flux

b Exemples de champ de température

Cas 1DD

x
T (x)

L

T1 T2 < T1

ϕth

Géométrie cylindrique
T2 < T1

ϕth

ϕth

T12R1 2R2
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c Résistance thermique

T1 T2 < T1

ϕth

En régime stationnaire

T1 − T2 = RthΦth1→2

Analogie avec l’électricité :

Conduction thermique Conduction électrique

Grandeur transportée énergie interne U charge q

Loi d’Ohm T1 − T2 = RthΦth,1→2 V1 − V2 = RI1→2

Résistance Rth =
L

λS
R =

ρelecL

S
=

L

σS

Flux Φth =
˜

M∈S

j⃗Q(M, t).
−→
dSM I =

˜
M∈S

j⃗elec(M, t).
−→
dSM

Lois j⃗th = −λ
−−→
gradT j⃗elec = −σ

−−→
gradV

Association série Rth,serie = Rth,1 +Rth,2 Rserie = R1 +R2

Association parallèle
1

Rth,//
=

1

Rth,1
+

1

Rth,2

1

R//
=

1

R1
+

1

R2

IV.3 Un exemple non stationnaire, effet de cave

L’atmosphère occupe le demi-espace x < 0 et le sol le demi-espace x > 0. La température au niveau du sol
est :

T (0) = Tm + a cos(ωt)

1. Le coefficient de diffusivité thermique du sol étant estimé à κ = 3·10−7 m2.s−1, on cherche à construire
un modèle permettant de déterminer la profondeur à laquelle on doit creuser une cave dans une région
où les écarts de température entre le jour et la nuit atteignent 30oC si l’on veut que les écarts de
température dans la cave restent inférieurs à 0, 5oC.

(a) Établir l’équation de diffusion thermique en coordonnées cartésiennes.

(b) On cherche des solutions de la forme T (x, t) = Tm + θ(x, t), quelle équation différentielle régit
θ(x, t) ?

(c) On utilise alors les notations complexes et on cherche des solutions de la forme θ(x, t) = f(x)eiωt.
En déduire que f vérifie :

d2f

dx2
− 2i

δ2
f = 0

Quelle est l’expression de δ ?

(d) Établir l’expression de f(x).

(e) Donner l’expression de T (x, t) en fonction de Tm, a, δ et ω.
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(f) Quel est le décalage temporel entre les oscillations diurnes de température en surface et dans la
cave ?

2. (a) Les écarts saisonniers de température étant de 15oC en surface, quel est cet écart dans la cave ?

(b) Quel est le décalage temporel entre les oscillations saisonnières de température en surface et dans
la cave ?
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