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Diffusion de particules

Applications directes du cours

1 Soit n(x, t) = n0 e
− x

a , la densité de particules diffusantes dans un tube d’axe Ox (x est compris entre 0 et h).
On note S la section du tube, h sa longueur et D coefficient de diffusion.

1. Exprimer le nombre total de particules contenues dans le tube.

2. Exprimer le vecteur densité de courant de particules
−→
jN .

3. Exprimer le flux par unité de temps des particules qui traversent la surface S placée en x = h/2.

2 Connaissant l’ordre de grandeur du coefficient de diffusion d’un gaz dans l’air estimer l’ordre de grandeur de
la durée que met un parfum à être décelé à une distance de 10 cm du flacon que l’on vient d’ouvrir, puis à une
distance de 1 m.

3 On étudie un gaz enfermé dans un tube cylindrique de section S et de longueur ℓ en régime stationnaire.

Établir l’expression de n(x) lorsque le tube est fermé aux deux extrémités et qu’il contient un nombre N0 de
particules.
Établir l’expression de n(x) lorsque le tube est ouvert aux deux extrémités avec des densités particulaires

imposées n(x = 0) = n1 et n(x = ℓ) = n2 > n1. Exprimer
−→
jN .

4 Dans les trois système de coordonnées calculer la divergence du vecteur position.

5 On considère le vecteur v⃗(x, y, x) = (2x+ y2)e⃗x + (x− z)e⃗y + (3x2 − 2z)e⃗z. Calculer sa divergence.

6 Soit le vecteur v⃗(r, θ, z) = (3r + 2
r )e⃗θ en cylindrique. Calculer sa divergence.

7 Déterminer l’expression de
−−→
grad (f) pour f(x, y, z) = x

y + 2z.

1 1. N = Sn0a(1− e−h/a), 2. j⃗(x) = Dn0

a e−x/ae⃗x, 3. Φ(h/2) =
Dn0S

a
e−h/2a. 2 τ10cm ≃ 103 s, τ1m ≃ 105 s.

3 Tube fermé n(x) = N0

Sℓ , tube ouvert n(x) = n1 + (n2 − n1)
x

ℓ
et j⃗ = Dn1−n2

ℓ e⃗x. 4 div
−−→
OM = 3. 5 div (v⃗) = 0.

6 div (v⃗) = 0. 7
−−→
grad f = 1

y e⃗x − x
y2 e⃗y + 2e⃗z.

Exercices

1. Diffusion entre deux récipients

Soient deux récipients, de volumes V1 et V2 constants, reliés par un tube de section S et de longueur L. À l’instant
t = 0, les deux récipients contiennent une même solution moléculaire mais à des concentrations molaires différentes
c01 et c02. À la date t, les concentrations sont respectivement c1(t) et c2(t) et on note ∆c(t) = c1(t)− c2(t).

1. En admettant que la concentration varie selon une loi affine le long du tube, déterminer la densité de flux de
molécules dans le tube.

2. Établir l’équation différentielle vérifiée par ∆c(t).

3. Résoudre cette équation ; en déduire le temps nécessaire pour réduire la différence de concentrations moléculaires
d’un facteur 10.

2. Diffusion de particules dans un axone

On considère une cellule sphérique, créatrice de particules, liée à un axone assimilé à un tuyau de longueur L.
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Cette diffusion de particules est caractérisée par le coefficient de diffusion D. Il y a consommation de particules le long
du tuyau avec le coefficient α, en moles par secondes et par mètres, uniforme et constant.
La concentration c en particules dans l’axone vérifie c(x = 0) = c0.

1. Qu’est-ce qu’une loi phénoménologique ? Citer des exemples.

2. Établir l’équation de diffusion vérifiée par c(x, t).

3. Quelle est la longueur maximale de l’axone en régime permanent ?

3. Sédimentation

On considère des particules de rayon R, de masse volumique µ, plongées dans un liquide de masse volumique µ′. Elles
sont soumises à une force de frottement visqueux f⃗ = −6πRηv⃗.
On a µ′ < µ. On se place en régime permanent. On note c1 le nombre de particules par unité de volume à l’altitude
z = 0.

1. Montrer que le mouvement des particules est vertical descendant uniforme de vitesse v0. Exprimer v0 en fonction
des données.
Calculer le vecteur densité de courant particulaire en fonction du nombre c(z) de particules par unité de volume
à l’altitude z et de v0.

2. En utilisant la loi de Fick, montrer qu’il existe un courant particulaire ascendant. On notera D le coefficient de
diffusion.

3. Montrer qu’il existe un régime permanent dans lequel on calculera c(z) en fonction de c1 = c(0).

4. On donne D =
kT

h
.

(a) Déterminer la dimension physique de h.

(b) Pour T = Cte, déterminer l’influence de z sur c.

(c) Pour z = Cte, déterminer l’influence de T sur c.

4. Diffusion d’atomes dans un solide

On utilise très souvent les phénomènes de diffusion pour la fabrication des transistors dans l’industrie microélectronique.
La diffusion d’atomes tels que le Bore dans un substrat de silicium permet, par exemple, de modifier considérablement
les propriétés électriques de ce dernier. Le plus souvent, les processus de diffusion ont lieu à des températures élevées.
Ainsi, les atomes se trouvent ≪ figés ≫lorsque le dispositif est ramené à température ambiante. La longévité du dispositif
est ainsi assurée.
On se propose ici d’établir les lois expliquant la diffusion des atomes dans les solides.

1. Rappeler l’expression de la loi de Fick. Quelle est la dimension du coefficient de diffusion D ?

2. Établir, grâce à une loi de conservation, une autre relation liant j et c.

3. En déduire l’équation de diffusion.

4. À l’instant initial, la concentration d’atomes est nulle partout sauf sur une faible épaisseur située en x = 0.
Soit Q le nombre de moles de particules implantées à la surface du matériau par unité de surface sur cette
très faible épaisseur. Au cours du processus de diffusion, la quantité de particules Q présentes dans le matériau
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reste constante (aucun atome ne quitte le matériau). On montre alors que la concentration de particules dans
le matériau au cours de la diffusion est :

c(x, t) = B(t)e−
x2

A(t)

À l’aide de l’équation de la diffusion, en utilisant les conditions initiales et la conservation de la quantité
d’atomes pendant la diffusion, montrer que l’on peut écrire :

A(t) = 4Dt et B(t) =
K√
t

Donner l’expression de K en fonction de Q et D. On rappelle que
∫∞
0

e−u2

du =
π

2
.

5. Déterminer la profondeur de diffusion h pour laquelle c(h, t) =
c(0, t)

e
. Au bout d’une heure, la profondeur de

diffusion vaut 5 µm, donner la valeur du coefficient des atomes de bore dans le silicium.

5. Diffusion dans un tuyau poreux

On étudie l’état stationnaire de diffusion gazeuse dans un tuyau cylindrique d’axe (Oz), de rayon a et de longueur
L très grande devant a. Les concentrations des molécules sont maintenues constantes aux deux extrémités du tuyau
avec : n(x = 0) = n0 et n(x = L) = 0. On note D le coefficient de diffusion des molécules.
Le tube est légèrement poreux : les molécules peuvent s’échapper vers l’extérieur à travers la paroi latérale du tuyau
d’épaisseur e ≪ a. Cette diffusion est caractérisée par le coefficient de diffusion D′ ≪ D. On supposera que la densité
de particules varie linéairement dans l’épaisseur du tube et qu’elle est nulle hors du tube : next = 0.

1. En comparant les temps caractéristiques de diffusion axiale et radiale, justifier le fait qu’on peut considérer que
n(r, z, t) ≃ n(z, t) au sein du tuyau.

2. Déterminer les projections jN,z(z, t) et jN,r(r = a, z, t) du vecteur densité de courant
−→
jN à la surface intérieure

latérale du tuyau.

3. Établir l’équation différentielle en n(z, t) au sein du tuyau.

4. Résoudre l’équation différentielle en régime stationnaire.

5. Étudier le cas où D′ −→ 0. Commentaire.

6. Éponge

On étudie le séchage d’une éponge sphérique, entièrement mouillée à l’état initial, modélisée par le schéma ci-dessous.
On suppose la température T et le volume V de l’éponge constants. On note Pext la pression partielle en vapeur d’eau
à l’extérieur, Pv,sat la pression de vapeur saturante de l’eau, D le coefficient de diffusion de la vapeur d’eau.

R(t)

R0

partie sèche

partie mouillée

Donnée : pour tout r tel que R(t) < r < R0 (i.e. la partie sèche), la densité particulaire d’eau n∗(r, t) vérifie, en régime
permanent :

∂ n∗

∂ r
= − ϕ

4πDr2

1. Déterminer l’équation différentielle vérifiée par R(t) ; en déduire l’expression de τ , temps de séchage de l’éponge.
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2. Application numérique : on prend pour coefficient de diffusion le coefficient de diffusion de l’eau dans l’air, soit
D = 2 · 10−5 m2.s−1, la pression de vapeur saturante Pv,sat = 3, 2 · 103 Pa à 25oC, et une pression partielle
à l’extérieur correspondant à 20% d’humidité, soit Pext = 0, 2 × Pv,sat = 0, 64 · 103 Pa. Déterminer la valeur
numérique du temps de séchage d’une éponge sphérique de rayon R0 = 10 cm.

7. Taille critique d’une bactérie aérobie - X2016

On étudie les conditions de survie d’une bactérie aérobie dans un lac de très grande taille à la température de 297 K.
Pour vivre, elle a besoin de consommer le dioxygène dissous dans l’eau au voisinage de sa surface.

La bactérie est modélisée par une sphère de centre O fixe, de rayon R, sa masse volumique µ est assimilée à celle
de l’eau. On se place en régime stationnaire et on note n(r) la densité particulaire, exprimée en m−3, du dioxygène
dissous à la distance r du centre O (r ≥ R). Loin de la bactérie, la concentration molaire volumique du dioxygène
dissous dans le lac vaut c0 ≃ 0, 2 mol.m−3.

On admet que la consommation en oxygène de la bactérie est proportionnelle à sa masse et on introduit le taux horaire
A de consommation de dioxygène par unité de masse, mesuré en mol.kg−1.s−1.

1. Expliquer qualitativement les phénomènes de convection et de diffusion. On suppose que la convection est
négligeable devant la diffusion. La diffusion du dioxygène dans l’eau obéit à la loi de Fick avec un coefficient de
diffusion D ≃ 2.10−9 m2.s−1.

2. Expliquer qualitativement pourquoi une ”grosse” bactérie ne peut pas survivre. Donner un ordre de grandeur
(expression littérale) du rayon maximal.

3. Exprimer Φ(r), le nombre de molécules de dioxygène entrant par unité de temps dans une sphère de rayon r
(r > R) en fonction de r, n (ou ses dérivées) et D. Quelle particularité possède Φ(r) en régime permanent ?

4. En déduire l’expression de la densité particulaire n(R+) en dioxygène dissous sur la surface extérieure de la
bactérie en fonction de Φ, D, R, NA et de la concentration molaire volumique c0 de dioxygène à grande distance
de la bactérie.

5. Calculer n(R+) en fonction de A, µ,D,R et c0. Commenter l’influence de R dans l’expression de n(R+).

6. À quelle condition sur R la bactérie peut-elle survivre ?

Résolution de problème

1. Mesure du coefficient de diffusion de l’eau

Pour mesurer le coefficient de diffusion de la vapeur d’eau dans l’air, on réalise le dispositif suivant :
un tube de section S = 20 cm2 et de longueur L = 1, 0 m plonge dans un récipient rempli d’eau à T = 25°C. L’eau
s’évapore et la vapeur d’eau diffuse à travers l’air dans le tube. À l’extrémité supérieure du tube, un ventilateur souffle
un courant d’air sec pour chasser la vapeur d’eau.
On constate que la masse d’eau évaporée par jour est de 87 mg.
On donne la pression de vapeur saturante de l’eau à 25°C : Psat = 3, 2 · 103 Pa.
Déterminer le coefficient de diffusion de la vapeur d’eau dans l’air.
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