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Devoir surveillé n°5

Samedi 31 janvier 2026

Yy Durée : 4h00

e Vous devez vérifier que le sujet comprend 10 pages numérotées.

e Vous étes invités a porter une attention toute particuliére a la rédaction : les copies illisibles ou mal
présentées seront pénalisées.

e Toute réponse devra étre justifiée et ce, méme si ’énoncé ne le précise pas (sauf mention particuliére).

e Vous devez établir une relation littérale avant d’effectuer toute application numeérique (sauf mention
particuliére).

e Toute relation littérale présentant une erreur flagrante d’homogénéité ne donnera pas lieu a ’attri-
bution de points.

e Toute application numérique ne comportant pas d’unité ne donnera pas lieu a ’attribution de points.
e Ecrire le mot FIN & la fin de votre composition.

o Le téléphone portable est strictement interdit. I doit étre rangé éteint dans le sac.

La calculatrice est interdite.

Premiére partie

Chaine d’oscillateurs et onde mécanique

I  Oscillateur harmonique

Soit une molécule diatomique dont les deux atomes ne peuvent se déplacer que sur la direction (Ox). En notant
x la distance interatomique, I’énergie potentielle d’interaction s’écrit, selon la relation de Morse :

2
V)=V |1- e_a(x_“)}

avec Vp, a et xp des constantes réelles positives.

1. Déterminer la distance interatomique d’équilibre, appelée longueur de liaison a I'équilibre z,.

On s’intéresse aux petits mouvements autour de la position d’équilibre : = z¢q + €, avec |€| K Teq.

2. En développant ’énergie potentielle V' (z) au second ordre en €, montrer que la force d’interaction résultante
est équivalente & celle d’un ressort de constante de raideur k£ dont on donnera ’expression en fonction de
Vo et de a.

3. Si on appliquait cette force a une particule de masse m et de position €(t), quelle serait la pulsation des
oscillations wy de celle-ci? Représenter la vibration au cours du temps ¢t — €(t) pour des conditions
initiales données : €(0) = 3 et €(0) = 0.
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I Chaine unidimensionnelle infinie d’oscillateurs harmoniques

On considére une chaine unidimensionnelle infinie d’oscillateurs harmoniques identiques, de constante de raideur
k et de longueur a vide £y. Les masses sont toutes égales et désignées par des indices entiers successifs n € N.
On note m cette masse des masselottes entre les ressorts, ﬁ(t) = xn@ le vecteur position de la nie™e magse et
up, (t) son déplacement par rapport & sa position d’équilibre. Le référentiel est supposé galiléen. On ne prend en
compte que les interactions harmoniques entre les masses.

Initialement, & ¢ = 0, la chaine est au repos. La distance entre deux atomes successifs a 1’équilibre a (figure 1)
est égale & la longueur a vide £/ = a.

On prend comme origine sur I’axe la position repérée par n =0 a t = 0.

(n-1)a na (n+1)a

mouvement

FIGURE 1 — Chaine d’oscillateurs identiques

4. Pour n € N, écrire la position initiale de la n'®® masse (x,,(0)) en fonction de n et de a. En déduire son

écart uy(t) par rapport a sa position d’équilibre en fonction de z,(t), n et de a.

ieme

5. Etablir que I'équation du mouvement de la n masse, se met sous la forme :

)
tiy = Wi [Ung1 + Up—1 — Qtiy,]
avec «, constante réelle & déterminer.

On s’intéresse a la propagation d’ondes mécaniques dans cette chaine. On cherche & savoir s’il existe un
réel ¢ strictement positif tel que, en notation complexe, on puisse écrire :
un(t) = Upexp(i(wt — gna)) avec i = —1, w et Uy strictement positifs.

6. Cette onde est-elle harmonique ? Que représentent Uy et w ?

Cette onde présente une périodicité spatiale 8'il existe une p™° masse (avec p > n) telle que : up(t) = uy,(t).

On définit la longueur d’onde comme la plus petite distance séparant deux telles masses au repos
7. Etablir I'expression de la longueur d’onde A en fonction de a. Que représente finalement ¢ ?

a2
8. Montrer que la relation de dispersion, reliant w et ¢, est w? = 4w(2) (sin %) .

2
Représenter graphiquement la fonction : [¢ — w(q)] en se restreignant a l'intervalle [O, ]
a

IIT  Solide cristallin

On considére ici un cristal parfait, c’est-a-dire un assemblage spatial triplement périodique d’un trés grand
nombre d’atomes.

Hypothéses du modéle :

— tous les défauts du cristal réel sont négligés ;

— l’agitation thermique n’est qu’une vibration autour d’une position moyenne des atomes qui sera prise
comme position d’équilibre;

— les vibrations d’origine thermique sont décomposables en ondes planes;
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— seules les interactions entre plus proches voisins dans une maille cristalline cubique simple sont considérées :

10.

11.

12.

13.

14.

15.

16.

17.

les trois dimensions de ’espace sont découplées et I'étude sera faite sur I'une d’elles selon le modéle d’un
cristal & une dimension ;

I’énergie potentielle de liaisons entre deux atomes de masse m, distants de x, sera modélisée par le potentiel

de Lennard-Jones :
A B

V)= -5 -5 (AB)e R*2

A quelles interactions correspondent les deux termes du potentiel de Lennard-Jones ?
En notant a, la distance entre deux atomes & I’équilibre, montrer que V' se met sous la forme :

a\ 12 a\ b
vor-o[(2)" (%)
x T
ot la profondeur du puits de potentiel O est & exprimer en fonction de B et de a.
Sur le graphique ci-aprés, ont été représentées les courbes :

x V(x) x a\12 x a6

hd T\ hd had hd 2(2

[QH @0}7 [a—><x) }’ [a—> (x)]
Identifier ces courbes.

Courbe 1

Courbe 2

/Courbe 3

FIGURE 2
Montrer que, tant que ’amplitude des oscillations reste négligeable devant a, la liaison entre deux atomes
est modélisable par un ressort de constante de raideur k que ’on exprimera en fonction de ¢ et de a. On
pourra développer le potentiel au seconde ordre grace a la formule de Taylor.

Calculer k et wg pour a =2,0-10""m, ©g=0,10 eV et m =1,0-1072° kg.

Cette modélisation du solide cristallin permet de décrire la propagation d’ondes mécaniques longitudinales
dans les solides et on s’intéresse ici aux aspects énergétiques. On suppose que le mouvement des masses
correspond au passage d’'une onde plane harmonique de pulsation w dont la formule est indiquée entre les
questions 6 et 7.

Exprimer la valeur moyenne temporelle de I’énergie cinétique (E.) d’un atome indicé par n en fonction
de m, Uy et w. En déduire I’énergie cinétique moyenne pour N atomes.

Justifier que I'énergie potentielle moyenne (E,) du n’*™ atome se met sous la forme :

k
(Bp) = 7 (luns1 =l + un—1 — un?)

Gréace a la forme de I'onde et a la formule de dispersion obtenue précédemment, exprimer (E,) en fonction
de m, Uy et de w.

En déduire 'expression de 1’énergie interne du cristal.
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IV  Du discret au continu

X X +dx

repos : i
P luwy L e+ dxt)
— —
Fix,t) <— ——> F(x+dx1)
mouvement

FIGURE 3 — Passage au continu

18. A partir de la relation de dispersion, exprimer la longueur d’onde X\ de I’onde qui se propage en fonction
de w, wy et de a.
Calculer A pour des fréquences ultrasonores (f = 500 kHz). Commenter.

19. La comparaison de la longueur d’onde au parameétre a permet d’écrire u, (t) = u(z, t) (figure 3). Déterminer
I'équation différentielle régissant u(x,t). Calculer la célérité de I'onde dans le cristal pour des fréquences
ultrasonores.

Formulaire

Développement de Taylor

Soit I un intervelle de R, xg € I, f : I — R une fonction et n € N.
Si f est de classe C" sur I, Vh € R, (o + h) € 1,

df h2d2f h3d3f h™arf n
f(zo+h) = f(xo) + ha(m =x9) + 5@(33 = x9) ?@('x =x0)+ ...+ F@(x = x0) + o(h")
Trigonométrie
() (07
cosp —cosq = —2sin sin | ——
2 2
cos(2x) = 1 — 2sin?(z) = 2cos?(x) — 1
Approximations

V2~1,4 et V3~1,7



Devoir surveillé n°5 Piste bleue PC* 2025-2026

Deuxiéme partie

Vibrations transversales

I Ondes stationnaires le long d’une corde tendue

Une fine corde métallique homogéne, quasi-inextensible et sans raideur, de masse linéique u, est soumise a une
tension d’équilibre T'. Ses déformations dans le plan (z,y) sont décrites par une fonction de hauteur y = h(x, t).
Dans tout le probléme, les déformations de la corde par rapport & I’axe horizontal sont supposées suffisamment
faibles pour que :

— l'angle a(z, t) que fait la courbe h avec I’horizontale soit un infiniment petit d’ordre 1, tout comme la dérivée
Oh/0z.

— les déplacements d’un point matériel lié a la corde n’aient qu’une composante verticale, les déplacements
horizontaux étant négligeables.

Les extrémités de la corde sont dénommeées A et B, d’abscisse respective x4 et xp. Le milieu de la corde est
noté C, d’abscisse x¢ (Figure 1). Tout au long du probléme, on négligera les effets de pesanteur devant les
forces de tension de la corde.

X
A hx.)| G B
\_/ -
Figure 1

Q1. Soit un point O d’abscisse zo situé dans l'intervalle [AB](z4 < zo < zp). La partie de la corde située a
droite du point O(x > zp) exerce & chaque instant sur la partie de la corde située a sa gauche une certaine force
(ro,t). Comment s’exprime, en fonction de T' et d’une dérivée de h(x,t), la composante verticale (suivant y)

de cette force F' 7?7

Q2. Etablir, dans le cadre des hypothéses énoncées ci-dessus, I’équation de d’Alembert vérifiée par h(z,t).
Exprimer la célérité c associée en fonction des paramétres p et T

Q3. Peut-on observer des discontinuités spatiales de la dérivée Oh/0x en des points autres que A et B ? Justifier
votre réponse.

Q4. La corde est fixée en ses deux extrémités A et B a une hauteur nulle, soit h(z4,t) =0 et h(xp,t) = O. La
longueur de la corde entre ces deux points est 2L, et ’on choisit 'origine du repére de fagon a avoir z4 = 0 et
rp = 2L.

On recherche les ondes stationnaires de vibration de la corde sous la forme :

h(z,t) = Zsin(kz + ¢) cos(wt)
ou Z est une amplitude arbitraire. Donner, en la démontrant, la relation existant entre w, k et c.

Q5. Les valeurs admissibles de k (norme du vecteur d’onde) forment une suite de valeurs discrétes k,, ou
n =1,2,3... est entier positif.

Donner I'expression des k,, admissibles, des pulsations propres w, et des fréquences f, associées.

Comment choisir la phase ¢ 7

Q6. Tracer soigneusement l'allure de la déformation associée au mode de vibration fondamental k1, telle qu’on
pourrait ’observer & ’aide, par exemple, d’'une caméra rapide ou d’une lampe stroboscopique. Tracer de la
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méme fagon lallure des déformations associées a la premiére, deuxiéme et troisiéme harmonique (respectivement
ko, k3, k4).

Compter et faire figurer sur votre schéma, & chaque fois, le nombre de "noeuds" et de "ventres" associés a ces
modes de vibration.

Q7. On peut montrer que I'énergie mécanique par unité de longueur e(z,t) associée a 'onde est égale a :

e(z,t) = g [(%)2 + 2 <gz>2]

Calculer la valeur moyenne temporelle (e) en un point quelconque x de la corde, pour le mode de vibration
fondamental.

Q8. En déduire I'énergie totale associée & la vibration du mode fondamental. On exprimera le résultat en
fonction de la tension T de la corde, de sa demi-longueur L et de 'amplitude Z des vibrations.

Application numérique : Que vaut 'amplitude Z des vibrations lorsque I’énergie totale du mode est égale a 0,1
Jyavece L=1m, T =100 N (v2~ 1,4, /5~2,2)7

II Perturbation par une masse

On accroche a la corde une perle de masse m, située exactement au milieu de la corde, au point d’abscisse
xc = L. Cette masse est supposée ponctuelle (sans épaisseur).

hd
A C B
\/ X
Figure 2

Q9. En considérant les schémas tracés a la question 1.6, déterminer les modes de vibration susceptibles d’étre
modifiés (changement de fréquence propre) par la présence de la masse m. Déterminer de la méme fagon les
modes qui ne devraient pas étre modifiés par la présence de la masse.

. oh
Q10. En présence de cette masse supposée ponctuelle, les dérivées & gauche et a droite de P ne sont pas
x

oh
nécessairement égales (la dérivée 92 est discontinue en L).
x

0°%h

) W(La t)

En appliquant le principe fondamental de la dynamique (PFD), trouver une relation entre T, m

oh

oh
(accélération suivant y de la masse), ({)—(L_7 t) et a—(L+, t), ou l'on a défini :
x x
oh dh
—(L7,t) = lim —(x,t
ox ( ’ ) x—1>IE— T (.T, )
lorsque x tend vers L par valeur inférieure, et :

oh dh
— (LT, t) = lim —(x,t
gzl 0 = g 5y ()

lorsque x tend vers L par valeur supérieure. Illustrer votre relation par un schéma.

Q11. On recherche le mode de vibration fondamental sous la forme d’une fonction symétrique par rapport a L,
c’est-a-dire telle que h(z,t) = h(2L — x,t), et donnée sur U'intervalle de gauche 0 < z < L par :

h(z,t) = sin(Kx) cos(wt)
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ol K est un vecteur d’onde & déterminer, et w et K vérifient la relation de dispersion habituelle. Montrer que
les conditions aux limites imposent désormais la condition de quantification suivante sur les valeurs possibles

dewet K : ( ) )
cos(KL mw
tan(KL) = =
cotan(KL) = ey = 9RT

Q12. Tracer la courbe représentative de cotan(z) sur I'intervalle ]0, 37].
Montrer que si la masse m est nulle, on retrouve comme cas particulier de ’équation ci-dessus le vecteur d’onde
k1 de la fréquence de vibration de la corde homogéne.

Q13. Lorsque m est faible, on recherche un développement limité & ’ordre 1 en m du vecteur inconnu K :
K~k +8m

ou B est une constante & déterminer en fonction de w,c,T et L. On utilisera en particulier le développement
limité suivant de la fonction cotangente, valable pour de petites valeurs de c :

s
cotan (— + e) ~ —€
2
K est-il plus grand ou plus petit que ky ?

Q14. Déduire de la question précédente le changement relatif de fréquence Af;/fi du mode de vibration
fondamental de la corde lorsque I'on passe du vecteur k; au vecteur K. Exprimer le résultat en fonction de m, u
et L. La détermination expérimentale de la nouvelle fréquence de vibration permet donc de déterminer la masse
m déposée sur la corde.

Application numérique : Calculer m lorsque L =1 m, T'=100 N, = 1072 kg.m™!, Af; = —1 Hz.
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Troisiéme partie

Ondes acoustiques dans 1’eau

On rappelle I'équation de Navier-Stokes décrivant les évolutions spatiales, dans le référentiel (Oxyz) supposé
galiléen, et temporelles du champ de vitesse ¥(7,t) d’un fluide de masse volumique p(7,t), soumis & la pression
P(7,t), dans le cadre d’'un modeéle newtonien des forces de cisaillement, avec la viscosité dynamique 7

p(ijﬂ?-gr?i)-?) — _grad P+ pq + AT

La propagation des ondes acoustiques dans I’eau sera étudiée dans le modéle ci-aprés :

— D’écoulement est supposé parfait, sauf pour I’étude des atténuations menée aux questions 10 et 11;

— le champ de pesanteur est uniforme, ¢ = g e, (g > 0, (Oz) est vertical descendant) ;

— les variations de pression par rapport & la pression statique Ps(z) (en I'absence d’onde) sont faibles, on
notera P(?, t) = Ps(z) + pa(ﬁ, t), ou |ps| < Py avec Py la pression atmosphérique de surface;

— la vitesse d’écoulement associée au passage de 'onde vérifie || < ¢q, ol ¢, est la célérité de la propagation
de 'onde acoustique;

— la compressibilité y de I’eau est supposée constante, de sorte que la masse volumique évolue instantanément
comme la surpression acoustique p, : p(7,t) = ,00(1 + xPa(7, t)), ol |xpa| € 1;

— enfin, la longueur d’onde A, des ondes acoustiques vérifie la relation g\, < c2.

Q 1. Donner une autre relation reliant p a T et en préciser la signification physique.

Q 2. Pour le fluide au repos, donner I'expression de la loi fondamentale de la statique des fluides. En déduire
I'expression de Ps(z).

Q 3. Etablir deux équations aux dérivées partielles, linéarisées pour les grandeurs (7, t) et py (7, t).

Q 4. En déduire I’équation de propagation de la surpression acoustique p,. Exprimer ¢, en fonction de pg et x.

Q 5. Que devient cette équation dans le cas d’une onde sinusoidale de pulsation w ?

Dans ce qui suit, on s’intéresse & une onde acoustique plane et progressive, de pulsation w, se propageant
dans la direction de l'axe € ; il ne s’agit pas nécessairement de la direction €, du triédre (Ozyz).

X, t) : .
. eterminer la 1orme generale de pg y el montrer que v s = ——-—— €x 0u on exprimera [ 1mpe-
Q 6. Déterminer la f générale d X,t) et t 7(X,t “(Z) ) I'impé
a

dance acoustique Z, en fonction de pg et de c,.

On cherche maintenant une solution de ’équation de propagation présentant la symétrie de révolution

autour d’une source ponctuelle O. La surpression acoustique p, et la vitesse v de I’eau en un point M

s’expriment alors en fonction de r = OM et de €, = OM /r. Dans le cas d’une onde sphérique divergente

sinusoidale de pulsation w, la surpression acoustique est donnée par p, = — cos(kr — wt) (& un choix
r

d’origine des temps prés) out A est une constante.

Q 7. Déterminer Pexpression de ' (r, t).

. A quelle condition peut-on toujours écrire ¥ = —¢&, ? Comment s’appelle cette approximation 7
8. A quell dition peut-on touj Pag 2 ¢ t s’appelle cette app tion ?
a

On se place dans ce cas dans la suite.
Lors de leur propagation, les ondes acoustiques sous-marines transportent une certaine puissance P. Ce

transport sera étudié & grande distance de la source de 'onde. On étudie donc ici une onde acoustique
sphérique émise depuis le point O et caractérisée, en coordonnées sphériques, par la pression P(7,t) =
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Q9.

Q 10.

Q 11.

A
Py(2) + pa(r,t) avec pa(r,t) = Re(pa) ot pa(r,t) = . exp(i(kr — wt)) et par la vitesse ¥(r, t) = Re(vq) €

. Pa
oll v, = —.
7 P0oCa

Un capteur d’aire dS est disposé a la distance r de O. On note 7 la normale a la surface du capteur et
dS = dS7i (Figure 1). On admet que le capteur ne perturbe pas l'onde acoustique, c’est-a-dire que sa
surface se déplace a la méme vitesse U que celle imposée dans I’eau par 'onde.

~

dsS

O

Figure 1 - Puissance acoustique regue par un capteur

Montrer que la puissance moyenne par unité de surface du capteur exercée par les forces de pression sur
le capteur s'écrit — = I, 7 - € et exprimer lintensité tique I, en fonction d t de |pa|’
e capteur s'écrit — = I 7l - & et exprimer 'intensité acoustique I, en fonction de pg, ¢, et de |pq

On étudie en général atténuation de l'intensité acoustique dans une échelle logarithmique (en décibels),

I
sous la forme P = 10 log< a(r0)
Io(7)

r
d’atténuation sont alors décrits par le coefficient a tel que P = 20 log — + a(r — 1¢); on prend en
T

> ot on note log(z) le logarithme décimal de z. Les phénoménes

compte ces phénoménes dans les seules questions 10 et 11. On peut aussi rendre compte de ces phé-
nomeénes d’amortissement en écrivant la surpression acoustique, en notation complexe, sous la forme

A
pa(r,t) = = exp(i(kr — wt)), ot k = k' + ik” est complexe et k&’ > 0.
— r

Montrer que « est simplement relié¢ a la partie imaginaire k” de k.

Une contribution notable aux phénomeénes d’atténuation est due a la viscosité dynamique 1 de 'eau de
mer. On admet que, pour une atténuation assez faible, les parties réelle et imaginaire de k£ sont données
par

ot [ klzn
2poca

K =

w
Ca

Dans ’eau de mer, avec ¢, ~ 1500 m.s~!, calculer k” et la distance caractéristique d’atténuation due aux
phénomeénes visqueux pour les fréquences 3 kHz et 30 kHz.
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Données utiles

Données numériques
Accélération de la pesanteur terrestre g=29,80 m.s2

Viscosité dynamique de 'eau a 4°C n=1,52-10"3 Pa.s
Masse volumique de eau liquide (a 4°C) pfiho =1,00-10% kg;m~3

Formulaire

—
grad f = ==e; + ——=¢es +

O0f 10f 1 ﬁe—>
ar r 06 rsinfde ©

82 0 0 82
Af = div(grad (f)) = %w(rf) + 1 (sin@ae (sin&ag) + 890];)

r2sin? 6

10



