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Devoir surveillé no5

Samedi 31 janvier 2026

Durée : 4h00

• Vous devez vérifier que le sujet comprend 10 pages numérotées.

• Vous êtes invités à porter une attention toute particulière à la rédaction : les copies illisibles ou mal
présentées seront pénalisées.

• Toute réponse devra être justifiée et ce, même si l’énoncé ne le précise pas (sauf mention particulière).

• Vous devez établir une relation littérale avant d’effectuer toute application numérique (sauf mention
particulière).

• Toute relation littérale présentant une erreur flagrante d’homogénéité ne donnera pas lieu à l’attri-
bution de points.

• Toute application numérique ne comportant pas d’unité ne donnera pas lieu à l’attribution de points.

• Écrire le mot FIN à la fin de votre composition.

• Le téléphone portable est strictement interdit. Il doit être rangé éteint dans le sac.

• La calculatrice est interdite.

Première partie

Chaîne d’oscillateurs et onde mécanique

I Oscillateur harmonique

Soit une molécule diatomique dont les deux atomes ne peuvent se déplacer que sur la direction (Ox). En notant
x la distance interatomique, l’énergie potentielle d’interaction s’écrit, selon la relation de Morse :

V (x) = V0

[
1− e−a(x−x0)

]2
avec V0, a et x0 des constantes réelles positives.

1. Déterminer la distance interatomique d’équilibre, appelée longueur de liaison à l’équilibre xeq.

On s’intéresse aux petits mouvements autour de la position d’équilibre : x = xeq + ϵ, avec |ϵ| ≪ xeq.
2. En développant l’énergie potentielle V (x) au second ordre en ϵ, montrer que la force d’interaction résultante

est équivalente à celle d’un ressort de constante de raideur k dont on donnera l’expression en fonction de
V0 et de a.

3. Si on appliquait cette force à une particule de masse m et de position ϵ(t), quelle serait la pulsation des
oscillations ω0 de celle-ci ? Représenter la vibration au cours du temps t −→ ϵ(t) pour des conditions
initiales données : ϵ(0) = β et ϵ̇(0) = 0.
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II Chaîne unidimensionnelle infinie d’oscillateurs harmoniques

On considère une chaîne unidimensionnelle infinie d’oscillateurs harmoniques identiques, de constante de raideur
k et de longueur à vide ℓ0. Les masses sont toutes égales et désignées par des indices entiers successifs n ∈ N.
On note m cette masse des masselottes entre les ressorts, −→rn(t) = xn

−→ux le vecteur position de la nieme masse et
un(t) son déplacement par rapport à sa position d’équilibre. Le référentiel est supposé galiléen. On ne prend en
compte que les interactions harmoniques entre les masses.
Initialement, à t = 0, la chaîne est au repos. La distance entre deux atomes successifs à l’équilibre a (figure 1)
est égale à la longueur à vide ℓ0 = a.
On prend comme origine sur l’axe la position repérée par n = 0 à t = 0.

FIGURE 1 – Chaîne d’oscillateurs identiques

4. Pour n ∈ N, écrire la position initiale de la nieme masse (xn(0)) en fonction de n et de a. En déduire son
écart un(t) par rapport à sa position d’équilibre en fonction de xn(t), n et de a.

5. Établir que l’équation du mouvement de la nieme masse, se met sous la forme :

ün = ω2
0 [un+1 + un−1 − αun]

avec α, constante réelle à déterminer.

On s’intéresse à la propagation d’ondes mécaniques dans cette chaîne. On cherche à savoir s’il existe un
réel q strictement positif tel que, en notation complexe, on puisse écrire :
un(t) = U0 exp(i(ωt− qna)) avec i2 = −1, ω et U0 strictement positifs.

6. Cette onde est-elle harmonique ? Que représentent U0 et ω ?

Cette onde présente une périodicité spatiale s’il existe une pieme masse (avec p > n) telle que : up(t) = un(t).
On définit la longueur d’onde comme la plus petite distance séparant deux telles masses au repos

7. Établir l’expression de la longueur d’onde λ en fonction de a. Que représente finalement q ?

8. Montrer que la relation de dispersion, reliant ω et q, est ω2 = 4ω2
0

(
sin

qa

2

)2
.

Représenter graphiquement la fonction : [q → ω(q)] en se restreignant à l’intervalle
[
0,

2π

a

]
.

III Solide cristallin

On considère ici un cristal parfait, c’est-à-dire un assemblage spatial triplement périodique d’un très grand
nombre d’atomes.

Hypothèses du modèle :

— tous les défauts du cristal réel sont négligés ;
— l’agitation thermique n’est qu’une vibration autour d’une position moyenne des atomes qui sera prise

comme position d’équilibre ;
— les vibrations d’origine thermique sont décomposables en ondes planes ;
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— seules les interactions entre plus proches voisins dans une maille cristalline cubique simple sont considérées :
les trois dimensions de l’espace sont découplées et l’étude sera faite sur l’une d’elles selon le modèle d’un
cristal à une dimension ;

— l’énergie potentielle de liaisons entre deux atomes de masse m, distants de x, sera modélisée par le potentiel
de Lennard-Jones :

V (x) =
A

x12
− B

x6
, (A,B) ∈ R∗2

+

9. À quelles interactions correspondent les deux termes du potentiel de Lennard-Jones ?
10. En notant a, la distance entre deux atomes à l’équilibre, montrer que V se met sous la forme :

V (x) = Θ0

[(a
x

)12
− 2

(a
x

)6
]
,

où la profondeur du puits de potentiel Θ0 est à exprimer en fonction de B et de a.
11. Sur le graphique ci-après, ont été représentées les courbes :[

x

a
−→ V (x)

Θ0

]
,

[
x

a
−→

(a
x

)12
]
,

[
x

a
−→ 2

(a
x

)6
]

Identifier ces courbes.

FIGURE 2
12. Montrer que, tant que l’amplitude des oscillations reste négligeable devant a, la liaison entre deux atomes

est modélisable par un ressort de constante de raideur k que l’on exprimera en fonction de Θ0 et de a. On
pourra développer le potentiel au seconde ordre grâce à la formule de Taylor.

13. Calculer k et ω0 pour a = 2, 0 · 10−10 m, Θ0 = 0, 10 eV et m = 1, 0 · 10−25 kg.

Cette modélisation du solide cristallin permet de décrire la propagation d’ondes mécaniques longitudinales
dans les solides et on s’intéresse ici aux aspects énergétiques. On suppose que le mouvement des masses
correspond au passage d’une onde plane harmonique de pulsation ω dont la formule est indiquée entre les
questions 6 et 7.

14. Exprimer la valeur moyenne temporelle de l’énergie cinétique ⟨Ec⟩ d’un atome indicé par n en fonction
de m, U0 et ω. En déduire l’énergie cinétique moyenne pour N atomes.

15. Justifier que l’énergie potentielle moyenne ⟨Ep⟩ du nieme atome se met sous la forme :

⟨Ep⟩ =
k

4

(
|un+1 − un|2 + |un−1 − un|2

)
.

16. Grâce à la forme de l’onde et à la formule de dispersion obtenue précédemment, exprimer ⟨Ep⟩ en fonction
de m, U0 et de ω.

17. En déduire l’expression de l’énergie interne du cristal.
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IV Du discret au continu

FIGURE 3 – Passage au continu

18. À partir de la relation de dispersion, exprimer la longueur d’onde λ de l’onde qui se propage en fonction
de ω, ω0 et de a.
Calculer λ pour des fréquences ultrasonores (f = 500 kHz). Commenter.

19. La comparaison de la longueur d’onde au paramètre a permet d’écrire un(t) = u(x, t) (figure 3). Déterminer
l’équation différentielle régissant u(x, t). Calculer la célérité de l’onde dans le cristal pour des fréquences
ultrasonores.

Formulaire

Développement de Taylor

Soit I un intervelle de R, x0 ∈ I, f : I → R une fonction et n ∈ N.
Si f est de classe Cn sur I, ∀h ∈ R, (x0 + h) ∈ I,

f(x0 + h) = f(x0) + h
df

dx
(x = x0) +

h2

2!

d2f

dx2
(x = x0) +

h3

3!

d3f

dx3
(x = x0) + ...+

hn

n!

dnf

dxn
(x = x0) + o(hn)

Trigonométrie

cos p− cos q = −2 sin

(
p+ q

2

)
sin

(
p− q

2

)
cos(2x) = 1− 2 sin2(x) = 2 cos2(x)− 1

Approximations

√
2 ≃ 1, 4 et

√
3 ≃ 1, 7
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Deuxième partie

Vibrations transversales

I Ondes stationnaires le long d’une corde tendue

Une fine corde métallique homogène, quasi-inextensible et sans raideur, de masse linéique µ, est soumise à une
tension d’équilibre T . Ses déformations dans le plan (x, y) sont décrites par une fonction de hauteur y = h(x, t).
Dans tout le problème, les déformations de la corde par rapport à l’axe horizontal sont supposées suffisamment
faibles pour que :
— l’angle α(x, t) que fait la courbe h avec l’horizontale soit un infiniment petit d’ordre l, tout comme la dérivée
∂h/∂x.
— les déplacements d’un point matériel lié à la corde n’aient qu’une composante verticale, les déplacements
horizontaux étant négligeables.

Les extrémités de la corde sont dénommées A et B, d’abscisse respective xA et xB. Le milieu de la corde est
noté C, d’abscisse xC (Figure 1). Tout au long du problème, on négligera les effets de pesanteur devant les
forces de tension de la corde.

Figure 1

Q1. Soit un point O d’abscisse xO situé dans l’intervalle [AB](xA < xO < xB). La partie de la corde située à
droite du point 0(x > xO) exerce à chaque instant sur la partie de la corde située à sa gauche une certaine force
−→
F (xO, t). Comment s’exprime, en fonction de T et d’une dérivée de h(x, t), la composante verticale (suivant y)
de cette force

−→
F ?

Q2. Établir, dans le cadre des hypothèses énoncées ci-dessus, l’équation de d’Alembert vérifiée par h(x, t).
Exprimer la célérité c associée en fonction des paramètres µ et T .

Q3. Peut-on observer des discontinuités spatiales de la dérivée ∂h/∂x en des points autres que A et B ? Justifier
votre réponse.

Q4. La corde est fixée en ses deux extrémités A et B à une hauteur nulle, soit h(xA, t) = 0 et h(xB, t) = O. La
longueur de la corde entre ces deux points est 2L, et l’on choisit l’origine du repère de façon à avoir xA = 0 et
xB = 2L.
On recherche les ondes stationnaires de vibration de la corde sous la forme :

h(x, t) = Z sin(kx+ ϕ) cos(ωt)

où Z est une amplitude arbitraire. Donner, en la démontrant, la relation existant entre ω, k et c.

Q5. Les valeurs admissibles de k (norme du vecteur d’onde) forment une suite de valeurs discrètes kn, où
n = 1, 2, 3... est entier positif.
Donner l’expression des kn admissibles, des pulsations propres ωn et des fréquences fn associées.
Comment choisir la phase ϕ ?

Q6. Tracer soigneusement l’allure de la déformation associée au mode de vibration fondamental k1, telle qu’on
pourrait l’observer à l’aide, par exemple, d’une caméra rapide ou d’une lampe stroboscopique. Tracer de la
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même façon l’allure des déformations associées à la première, deuxième et troisième harmonique (respectivement
k2, k3, k4).
Compter et faire figurer sur votre schéma, à chaque fois, le nombre de "noeuds" et de "ventres" associés à ces
modes de vibration.

Q7. On peut montrer que l’énergie mécanique par unité de longueur e(x, t) associée à l’onde est égale à :

e(x, t) =
µ

2

[(
∂ h

∂ t

)2

+ c2
(
∂ h

∂ x

)2
]

Calculer la valeur moyenne temporelle ⟨e⟩ en un point quelconque x de la corde, pour le mode de vibration
fondamental.

Q8. En déduire l’énergie totale associée à la vibration du mode fondamental. On exprimera le résultat en
fonction de la tension T de la corde, de sa demi-longueur L et de l’amplitude Z des vibrations.
Application numérique : Que vaut l’amplitude Z des vibrations lorsque l’énergie totale du mode est égale à 0,1
J, avec L = 1 m, T = 100 N (

√
2 ≃ 1, 4,

√
5 ≃ 2, 2 ) ?

II Perturbation par une masse

On accroche à la corde une perle de masse m, située exactement au milieu de la corde, au point d’abscisse
xC = L. Cette masse est supposée ponctuelle (sans épaisseur).

Figure 2

Q9. En considérant les schémas tracés à la question I.6, déterminer les modes de vibration susceptibles d’être
modifiés (changement de fréquence propre) par la présence de la masse m. Déterminer de la même façon les
modes qui ne devraient pas être modifiés par la présence de la masse.

Q10. En présence de cette masse supposée ponctuelle, les dérivées à gauche et à droite de
∂ h

∂ x
ne sont pas

nécessairement égales (la dérivée
∂ h

∂ x
est discontinue en L).

En appliquant le principe fondamental de la dynamique (PFD), trouver une relation entre T,m,
∂ 2h

∂ t2
(L, t)

(accélération suivant y de la masse),
∂ h

∂ x
(L−, t) et

∂ h

∂ x
(L+, t), où l’on a défini :

∂ h

∂ x
(L−, t) = lim

x→L−

∂ h

∂ x
(x, t)

lorsque x tend vers L par valeur inférieure, et :

∂ h

∂ x
(L+, t) = lim

x→L+

∂ h

∂ x
(x, t)

lorsque x tend vers L par valeur supérieure. Illustrer votre relation par un schéma.

Q11. On recherche le mode de vibration fondamental sous la forme d’une fonction symétrique par rapport à L,
c’est-à-dire telle que h(x, t) = h(2L− x, t), et donnée sur l’intervalle de gauche 0 ≤ x < L par :

h(x, t) = sin(Kx) cos(ωt)
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où K est un vecteur d’onde à déterminer, et ω et K vérifient la relation de dispersion habituelle. Montrer que
les conditions aux limites imposent désormais la condition de quantification suivante sur les valeurs possibles
de ω et K :

cotan(KL) =
cos(KL)

sin(KL)
=

mω2

2KT

Q12. Tracer la courbe représentative de cotan(x) sur l’intervalle ]0, 3π[.
Montrer que si la masse m est nulle, on retrouve comme cas particulier de l’équation ci-dessus le vecteur d’onde
k1 de la fréquence de vibration de la corde homogène.

Q13. Lorsque m est faible, on recherche un développement limité à l’ordre 1 en m du vecteur inconnu K :

K ≃ k1 + βm

où β est une constante à déterminer en fonction de ω, c, T et L. On utilisera en particulier le développement
limité suivant de la fonction cotangente, valable pour de petites valeurs de c :

cotan
(π
2
+ ϵ

)
≃ −ϵ

K est-il plus grand ou plus petit que k1 ?

Q14. Déduire de la question précédente le changement relatif de fréquence ∆f1/f1 du mode de vibration
fondamental de la corde lorsque l’on passe du vecteur k1 au vecteur K. Exprimer le résultat en fonction de m,µ
et L. La détermination expérimentale de la nouvelle fréquence de vibration permet donc de déterminer la masse
m déposée sur la corde.
Application numérique : Calculer m lorsque L = 1 m, T = 100 N, µ = 10−2 kg.m−1, ∆f1 = −1 Hz.
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Troisième partie

Ondes acoustiques dans l’eau

On rappelle l’équation de Navier-Stokes décrivant les évolutions spatiales, dans le référentiel (Oxyz) supposé
galiléen, et temporelles du champ de vitesse v⃗(r⃗, t) d’un fluide de masse volumique ρ(r⃗, t), soumis à la pression
P (r⃗, t), dans le cadre d’un modèle newtonien des forces de cisaillement, avec la viscosité dynamique η

ρ

(
∂−→v
∂ t

+ (−→v ·
−−→
grad ) · −→v

)
= −

−−→
gradP + ρ−→g + η∆v⃗

La propagation des ondes acoustiques dans l’eau sera étudiée dans le modèle ci-après :
— l’écoulement est supposé parfait, sauf pour l’étude des atténuations menée aux questions 10 et 11 ;
— le champ de pesanteur est uniforme, −→g = g−→ez (g > 0, (Oz) est vertical descendant) ;
— les variations de pression par rapport à la pression statique Ps(z) (en l’absence d’onde) sont faibles, on

notera P (−→r , t) = Ps(z) + pa(
−→r , t), où |pa| ≪ P0 avec P0 la pression atmosphérique de surface ;

— la vitesse d’écoulement associée au passage de l’onde vérifie |v⃗| ≪ ca, où ca est la célérité de la propagation
de l’onde acoustique ;

— la compressibilité χ de l’eau est supposée constante, de sorte que la masse volumique évolue instantanément
comme la surpression acoustique pa : ρ(r⃗, t) = ρ0

(
1 + χpa(r⃗, t)

)
, où |χpa| ≪ 1 ;

— enfin, la longueur d’onde λa des ondes acoustiques vérifie la relation gλa ≪ c2a.

Q 1. Donner une autre relation reliant ρ à −→v et en préciser la signification physique.
Q 2. Pour le fluide au repos, donner l’expression de la loi fondamentale de la statique des fluides. En déduire

l’expression de Ps(z).
Q 3. Établir deux équations aux dérivées partielles, linéarisées pour les grandeurs v⃗(r⃗, t) et pa(r⃗, t).
Q 4. En déduire l’équation de propagation de la surpression acoustique pa. Exprimer ca en fonction de ρ0 et χ.
Q 5. Que devient cette équation dans le cas d’une onde sinusoïdale de pulsation ω ?

Dans ce qui suit, on s’intéresse à une onde acoustique plane et progressive, de pulsation ω, se propageant
dans la direction de l’axe e⃗X ; il ne s’agit pas nécessairement de la direction e⃗x du trièdre (Oxyz).

Q 6. Déterminer la forme générale de pa(X, t) et montrer que v⃗(X, t) =
pa(X, t)

Za
e⃗X où on exprimera l’impé-

dance acoustique Za en fonction de ρ0 et de ca.

On cherche maintenant une solution de l’équation de propagation présentant la symétrie de révolution
autour d’une source ponctuelle O. La surpression acoustique pa et la vitesse v⃗ de l’eau en un point M

s’expriment alors en fonction de r = OM et de e⃗r =
−−→
OM/r. Dans le cas d’une onde sphérique divergente

sinusoïdale de pulsation ω, la surpression acoustique est donnée par pa =
A

r
cos(kr − ωt) (à un choix

d’origine des temps près) où A est une constante.

Q 7. Déterminer l’expression de −→v (r, t).

Q 8. À quelle condition peut-on toujours écrire v⃗ =
pa
Za

e⃗r ? Comment s’appelle cette approximation ?

On se place dans ce cas dans la suite.

Lors de leur propagation, les ondes acoustiques sous-marines transportent une certaine puissance P. Ce
transport sera étudié à grande distance de la source de l’onde. On étudie donc ici une onde acoustique
sphérique émise depuis le point O et caractérisée, en coordonnées sphériques, par la pression P (r⃗, t) =
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Ps(z) + pa(r, t) avec pa(r, t) = Re(pa) où pa(r, t) =
A

r
exp

(
i(kr − ωt)

)
et par la vitesse v⃗(r, t) = Re(va) e⃗r

où va =
pa

ρ0ca
.

Un capteur d’aire dS est disposé à la distance r de O. On note n⃗ la normale à la surface du capteur et
dS⃗ = dS n⃗ (Figure 1). On admet que le capteur ne perturbe pas l’onde acoustique, c’est-à-dire que sa
surface se déplace à la même vitesse v⃗ que celle imposée dans l’eau par l’onde.

z

dS

n⃗

O

re⃗rθ

Figure 1 - Puissance acoustique reçue par un capteur

Q 9. Montrer que la puissance moyenne par unité de surface du capteur exercée par les forces de pression sur

le capteur s’écrit
dP
dS

= Ia n⃗ · e⃗r et exprimer l’intensité acoustique Ia en fonction de ρ0, ca et de
∣∣pa∣∣2.

On étudie en général l’atténuation de l’intensité acoustique dans une échelle logarithmique (en décibels),

sous la forme P = 10 log

(
Ia(r0)

Ia(r)

)
où on note log(x) le logarithme décimal de x. Les phénomènes

d’atténuation sont alors décrits par le coefficient α tel que P = 20 log
r

r0
+ α(r − r0) ; on prend en

compte ces phénomènes dans les seules questions 10 et 11. On peut aussi rendre compte de ces phé-
nomènes d’amortissement en écrivant la surpression acoustique, en notation complexe, sous la forme

pa(r, t) =
A

r
exp

(
i(kr − ωt)

)
, où k = k′ + ik′′ est complexe et k′ > 0.

Q 10. Montrer que α est simplement relié à la partie imaginaire k′′ de k.

Une contribution notable aux phénomènes d’atténuation est due à la viscosité dynamique η de l’eau de
mer. On admet que, pour une atténuation assez faible, les parties réelle et imaginaire de k sont données
par

k′ =
ω

ca
et k′′ = − k′2η

2ρ0ca

Q 11. Dans l’eau de mer, avec ca ≃ 1500 m.s−1, calculer k′′ et la distance caractéristique d’atténuation due aux
phénomènes visqueux pour les fréquences 3 kHz et 30 kHz.
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Données utiles

Données numériques

Accélération de la pesanteur terrestre g = 9, 80 m.s−2

Viscosité dynamique de l’eau à 4oC η = 1, 52 · 10−3 Pa.s

Masse volumique de l’eau liquide (à 4oC) ρℓH2O
= 1, 00 · 103 kg ;m−3

Formulaire

−−→
grad f =

∂ f

∂ r
−→er +

1

r

∂ f

∂ θ
−→eθ +

1

r sin θ

∂ f

∂ φ
−→eφ

∆f = div (
−−→
grad (f)) =

1

r

∂2

∂ r2
(rf) +

1

r2 sin2 θ

(
sin θ

∂

∂ θ

(
sin θ

∂ f

∂ θ

)
+

∂2 f

∂ φ2

)
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