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Première partie

Vibrations transverses

I Ondes stationnaires le long d’une corde tendue

1. Pour le tronçon [x, x+∆x], le théorème de la résultante cinétique s’écrit

µ∆xaey =
−→
F (x+∆x, t)−

−→
F (x, t)

où a−→ey désigne l’accélération du centre de masse du tronçon ; en divisant par ∆x,
on obtient

µa−→ey =

−→
F (x+∆x, t)−

−→
F (x, t)

∆x

puis, en passant à la limite ∆x → 0 :

µ
∂ 2h(x, t)

∂ t2
−→ey =

∂
−→
F

∂ x
(x, t) (M)

En projetant (M) sur −→ex, on obtient

0 =
∂ Fx

∂ x
(x, t)

soit, en intégrant :
Fx(x, t) = T

La tension étant tangente au fil, on a

Fy

Fx
=

∂ h(x, t)

∂ x
soit Fy(x, t) = T

∂ h(x, t)

∂ x

2. En projetant (M) sur −→ey , on obtient

µ
∂ 2h(x, t)

∂ t2
=

∂ Fy

∂ x
(x, t)

Compte tenu de l’expression de Fy obtenue à la question précédente, on obtient
l’équation de d’Alembert

∂ 2h(x, t)

∂ t2
=

T

µ

∂ 2h(x, t)

∂ x2

La célérité des ondes est donc

c =

√
T

µ

3. ∂h/∂x est dérivable, donc continue en des points autres que A et B.

4. On recherche les ondes stationnaires de vibration de la corde sous la forme :

h(x, t) = Z sin(kx+ ϕ) cos(ωt)

En dérivant deux fois, on obtient

∂ 2h(x, t)

∂ t2
= −Zω2 sin(kx+ ϕ) cos(ωt) et

∂ 2h(x, t)

∂ x2
= −Zk2 sin(kx+ ϕ) cos(ωt)

En substituant ces expressions dans l’équation de d’Alembert, on obtient

−Zω2 sin(kx+ ϕ) cos(ωt) = −Zk2c2 sin(kx+ ϕ) cos(ωt)

soit
ω2 = k2c2

5. La condition aux limites en A donne sinϕ = 0 ; on peut choisir ϕ = 0.

La condition aux limites en B s’écrit alors sin 2kL = 0, ce qui impose

2kL ≡ 0 [π] soit kn = n
π

2L
(n ∈ N∗)

Les pulsations propres et fréquences propres correspondantes sont

ωn = n
πc

2L
et fn = n

c

4L
(n ∈ N∗)

6. L’allure de la déformation associée au mode de vibration fondamental k1 est
représentée ci-dessous ; on observe un ventre et 2 noeuds.
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Pour le premier harmonique (mode k2), on a 2 ventres et 3 noeuds.

Pour le second harmonique (mode k3), on a 3 ventres et 4 noeuds.

Pour le troisième harmonique (mode k4), on a 4 ventres et 5 noeuds.

7. On peut montrer que l’énergie mécanique par unité de longueur e(x, t) associée
à l’onde est égale à :

e(x, t) =
µ

2

[(
∂ h

∂ t

)2

+ c2
(
∂ h

∂ x

)2
]

Pour le mode de vibration fondamental, on a, en explicitant k1 et ω1 :

h = Z sin
(πx
2L

)
cos

(
πct

2L

)
soit, en dérivant :

∂ h

∂ t
= −Z

( πc

2L

)
sin

(πx
2L

)
sin

(
πct

2L

)
et

∂ h

∂ z
= Z

( π

2L

)
cos

(πx
2L

)
cos

(
πct

2L

)

On en déduit

⟨
(
∂ h

∂ t

)2

⟩ = 1

2
Z2

( πc

2L

)2

sin2
(πx
2L

)
et

⟨
(
∂ h

∂ z

)2

⟩ = 1

2
Z2

( π

2L

)2

cos2
(πx
2L

)
soit

⟨e(x, t)⟩ = µ

4
Z2

( πc

2L

)2 [
sin2

(πx
2L

)
+ cos2

(πx
2L

)]
=

µ

4
Z2

( πc

2L

)2

8. L’énergie totale associée à la vibration du mode fondamental est

E1 =

2Lˆ

0

⟨e(x, t)⟩dt = µL

2
Z2

( πc

2L

)2

=
π2TZ2

8L

Application numérique : Lorsque l’énergie totale du mode est égale à 0,1 J, avec
L = 1 m, T = 100 N, l’amplitude des oscillations est Z ≃ 3 cm.

I.1 Perturbation par une masse

9. Les modes de vibration susceptibles d’être modifiés (changement de fréquence
propre) par la présence de la masse m sont ceux qui correspondent à un ventre en
x = L.

Les modes qui ne devraient pas être modifiés par la présence de la masse sont ceux
qui correspondent à un noeud en x = L.

10. En présence de cette masse supposée ponctuelle, les dérivées à gauche et à

droite de
∂ h

∂ x
ne sont pas nécessairement égales (la dérivée

∂ h

∂ x
est discontinue en

L). La composante transversale de la tension est alors discontinue ; la masse m est
soumise aux forces verticales

T+
y = T

∂ h

∂ x
(L+, t) et T−

y = T
∂ h

∂ x
(L−, t)

Le principe fondamental de la dynamique (PFD) s’écrit alors

m
∂ 2h

∂ t2
(L, t) = T

(
∂ h

∂ x
(L+, t)− ∂ h

∂ x
(L−, t)

)
(m)
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La corde présente un point anguleux en x = L, comme le montre le schéma
ci-dessous.

11. On recherche le mode de vibration fondamental sous la forme d’une fonction
symétrique par rapport à L, c’est-à-dire telle que h(x, t) = h(2L− x, t), et donnée
sur l’intervalle de gauche 0 ≤ x < L par :

h(x, t) = H sin(Kx) cos(ωt)

On a alors
∂ h

∂ x
(L+, t)− ∂ h

∂ x
(L−, t) = −2

∂ h

∂ x
(L−, t) = −2KH cos(KL) cos(ωt)

La condition aux limites (m) en x = L s’écrit alors

−mω2H sin(KL) cos(ωt) = −2KTH cos(KL) cos(ωt)

soit

cotan(KL) =
mω2

2KT

12. La courbe représentative de cotan(x) sur l’intervalle ]0, 3π[ est représentée
ci-dessous

Si la masse m est nulle, l’équation se réduit à cotan(KL) = 0 soit

KL ≡ π

2
[Π]

on retrouve comme cas particulier

KL =
π

2
soit K =

π

2L
= k1

ce qui est le vecteur d’onde k1 du mode fondamental de la corde homogène.

13. Lorsque m est faible, on recherche un développement limité à l’ordre 1 en m
du vecteur inconnu K : K ≃ k1 + βm ; on peut alors écrire

cotan(KL) ≃ cotan(k1L+ βmL) = cotan
(π
2
+ βmL

)
≃ −βmL

et

mω2

2KT
≃ mω2

1

2k1T
=

mk21c
2

2k1T
=

mk1T

2Tµ
=

mπ

4µL

La condition aux limites en x = L donne alors

−βmL =
mπ

4µL
soit β = − π

4µL2

K est donc plus petit que k1.

14. La fréquence est proportionnelle au vecteur d’onde ; le changement relatif de
fréquence ∆f1/f1 est donc

∆f1
f1

=
K − k1

k1
=

βm

k1
= −π × 2L

4µL2π
= − m

2µL

Application numérique : Pour L = 1 m, T = 100 N, µ = 10−2 kg.m−1, on obtient
∆f1 = −1 Hz. On en déduit la masse

m = −2µL
∆f1
f1

avec f1 =
c

4L
=

1

4L

√
T

µ

soit

m = −8µL2

√
µ

T
∆f1 = 0, 8 g
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