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Diffusion thermique

Applications directes du cours

Montrer par un bilan, puis directement & partir de ’équation de conservation, qu’en régime stationnaire et sans
terme source, a 1D, le flux & travers toute section S de la barre est conservé : &y (x) = Dy.

Montrer, a partir de I’équation de conservation, qu’en régime stationnaire et sans terme source, le flux a travers
toute surface fermée est nul.

Un artisan verrier chauffe le milieu d'un tube en verre (Dy;, ~ 107% m2.s™!) de longueur 40 cm pour pouvoir
y créer un coude. Pendant combien de temps environ peut-il tenir a pleines mains les extrémités du tube sans
se briler ?

On accole bout a bout 2 tiges de méme section, de longueurs ¢; et ¢35, de conductivité thermique respective-
ment A; et Ay, dont les extrémités sont maintenues respectivement a T3 o et 75 . On suppose ’ensemble isolé
thermiquement.

Quelle est la température de la jonction en régime stationnaire ?

Comparer, en ordre de grandeur, la résistance thermique d’un vitrage simple en verre d’épaisseur e et celle d'un
double vitrage constitué de 2 couches de verre d’épaisseur e/3 séparées par un espace d’épaisseur e/3 rempli
d’air.
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Exercices

1. Température d’une interface

On considere un mur d’épaisseur e; = 25 cm. Sur ce mur est appliqué un isolant d’épaisseur e; = 5 cm. Les conductivités
thermiques du mur et de Iisolant sont respectivement \; =5 W.m 1. K~! et Ay = 0,05 W.m~'.K~! La température
extérieure du mur est f; = —10° C; la température intérieure de la piece a la surface de l'isolant est 6; = 20°C.
Exprimer la température ; a 'interface mur-isolant.

2. Vitres d’un wagon

Les vitres d'un wagon ont une épaisseur L, une aire totale S et une conductivité thermique A. Leur surface extérieure
est a la température T, et leur surface intérieure a la température T;.
On se placera dans tout I’exercice en régime stationnaire.

1. Etablir lexpression du champ de température T'(x) au sein de la vitre.

2. On tient compte des transferts conducto-convectifs a 1’aide de la loi de Newton qui donne le transfert thermique
entre un solide de température de surface T et un fluide de température 7 pendant dt :

5Q = h-S(T, — Ty)dt

On donne T} la température intérieure et To la température extérieure. En déduire les températures T; et Tp.
Application numérique.

3. Enfin on tient compte du bilan de rayonnement thermique regu par la surface extérieure avec une puissance
surfacique ;.
En déduire les nouvelles valeurs des températures T; et T,. Application numérique.
Quelle doit étre la puissance thermique de réfrigération du wagon pour maintenir sa température a 20°C?
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Données : Ty = 20°C; To = 35°C'; A= 0,10 S.I.; h =10 S.I.; s =200 W.m~2; L = 1,0 cm.; S = 20 m?.

3. Transferts thermiques dans un barreau

On considere un barreau cylindrique métallique de rayon R, de section o, de longueur L et de conductivité thermique
A. La température a 'extrémité x = 0 est 7. Partout ailleurs, a ’extérieur du cylindre, la température est T,. La
puissance cédée a l'extérieur par ’élément de cylindre de longueur dx et de section o est

dP = h(T(z) — T.)dx

1. Etablir Péquation différentielle vérifiée par T'(x).

2. Donner l'expression de T'(x) dans 'approximation ol L est trés grand. Préciser la condition de validité de cette
approximation.

3. On prend deux barreaux cylindriques de méme géométrie, 'un en cuivre (Agy), Uautre en étain (Ag,). On les
recouvre de paraffine, qui fond a 60°C. Sur le barreau de cuivre, la paraffine fond a I'abscisse x1, et sur celui
d’étain, elle fond & l’abscisse xo. Déterminer (Agy).

Données numériques : (Acy) = 390 W.m~ LK1 ; 2y = 30,0 cm; 25 = 12,4 cm.
4. Calculer la puissance dissipée par deux méthodes différentes.

4. Diffusion thermique en présence d’effet Joule

Un cylindre métallique (de conductivités électrique et thermique v et A) de section S et de longueur L est parcouru
longitudinalement par un courant d’intensité I. On suppose que les extrémités sont maintenues aux températures Ty
et 11 et que sa surface latérale est calorifugée.

1. Que vaut la puissance dissipée par effet Joule par unité de volume ?

2. Etablir I’équation de la conduction de la chaleur sachant que ’on adopte I’approximation d’un probleme unidi-
mensionnel, avec terme source, en régime stationnaire.

3. En déduire la loi d’évolution spatiale de la température en fonction de ’abscisse.

4. Examiner les cas particuliers o I = 0, puis Ty = T7. Tracer les courbes T'(x) dans les deux cas et les commenter.

5. Calculer le flux thermique aux deux extrémités et commenter.

5. Etude thermique d’un barreau d’uranium

Un barreau d’uranium servant de ” combustible nucléaire” a un diametre D = 29 mm. Ce barreau d’uranium est le siege
d’une réaction nucléaire qui dégage une puissance thermique par unité de volume P = 700 MW.m~3. La conductivité
thermique de I'uranium est A = 27 W.m~t K1,

1. La température sur la surface latérale du barreau est maintenue a la valeur 6y = 200°C.
(a) Déterminer la répartition de température dans le barreau dans ’approximation ot le barreau est tres long.
(b) Calculer numériquement la valeur maximale 6,,,, de la température dans le barreau.

2. En fait, I'uranium fond a la température 6y = 1132°C. Pour éviter la fusion du barreau, on prend une géométrie
différente : le cylindre est creux, de diametre intérieur D’ = 22 mm, le diametre extérieur D = 29 mm étant
conserveé.

(a) Déterminer la répartition de température dans le barreau.

/

maz de la température dans le barreau. Conclure.

(b) Calculer numériquement la valeur maximale 6

6. Création d’entropie dans un solide indilatable

Dans un milieu de température non homogene, on définit un vecteur fQ, densité de flux thermique, dont le flux a
travers une surface quelconque est égal au transfert thermique a travers cette surface par unité de temps.

On note A le coefficient de conductivité thermique du matériau, que I'on suppose indépendant de la température, et
uniforme dans tout le solide.
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1. (a) Montrer par un bilan énergétique que

- oT
div j — =0.
1V]Q+pcat

(b) En déduire que si fQ obéit a la loi de Fourier, T est solution d’une équation aux dérivées partielles que I’'on
établira.
2. (a) Exprimer la variation d’entropie de 1’élément de volume dr pendant Uintervalle de temps dt.

1
(b) Intégrer cette expression sur tout le volume du solide ; en identifiant & I’expression dS = ;5 + ?Q, calculer

Pentropie créée pendant l'intervalle de temps [¢,t + dt] dans tout le solide.
(c¢) En déduire Ientropie og créée par unité de volume et par unité de temps.

T
On donne : S(T,V) = S(Tp, Vo) + Cln <T)
0

7. Diffusion thermique et mammiferes marins

On considere un mammifere marin modélisé par une sphere de rayon R plongée dans ’eau. Ses cellules sont le siege
de réactions exothermiques qui produisent une puissance volumique py. Ceci produit une puissance totale P qui
maintient le mammifere & température constante. On note A la conductivité thermique de ’eau (pour r > R) et Ty la
température dans ’eau, & 'infini. On se place en régime stationnaire.

1. Déterminer I'expression de la puissance totale P dégagé par le mammifere en fonction de py et R.

2. Etablir I'expression du vecteur densité de courant thermique en r > R en fonction de py, r et R.

3. Déterminer 'expression de la température T'(r) & une distance r du centre du mammifére, en fonction de Ty, A

et P. En déduire la température cutanée T, de 'animal en r = R.

4. Exprimer la puissance P en fonction de Ty, Ty, A et R.

Quelle doit étre la valeur de P pour avoir T, = 30°C avec R = 25 cm.

. Expliquer pourquoi il ne peut pas exister de petit mammifére marin dans I’eau. Ce raisonnement est-il valable
sur Terre?

o> o

Données : Apir = 0,003 WK Im™1: Ay =5,0-107 WK tm~!; T, = 10°C.

8. Lac gelé

L’eau liquide d’un lac est a la température de congélation T, = 273 K. L’air au dessus du lac est a température
constante T, = 263 K. Sans glace & ¢ = 0, le lac se couvre progressivement d’une couche d’épaisseur £(t). La glace
posseéde une masse volumique p, une conductivité thermique A, une chaleur latente de fusion massique Ly et une
capacité thermique négligeable. La puissance thermique échangée a l'interface air-glace par unité de surface est

Py, = h(To(t) —T,)

ot Ty(t) est la température de la glace au voisinage de air.

air Ta
glace 1\ (1)

l/ eau Tc

xr

1. Déterminer la distribution de température T'(x,t) dans la glace en fonction de Ty(t), Te, £(t) et x.

2. Déterminer deux expressions du flux thermique traversant la couche de glace en fonction de £(t), Ty(t), Ty, et
T..

3. Etablir deux relations entre £(t) et Ty(t). En déduire I'équation différentielle vérifiée par £(t).

A AL
On posera KO:E etT:m
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de
4. Déterminer £(t) et Tp(t). Donner les valeurs numériques de £y, 7 et pre

5. Comment évolue la température a la surface du lac?

Données : 4 =0,90-10% kgm™3 A =21 Wm 1K™ Ly =334 kJkg™! et h =42 W-m 2K

9. Estimation de I’age de la Terre par Lord Kelvin

On néglige la sphéricité de la planete et on admet que le seul mécanisme énergétique dans le sol est le transfert
thermique diffusif. On admet que la température ne dépend que de la profondeur z comptée positivement et du temps
t.

On prendra les valeurs numériques suivantes
— masse volumique p = 2,8.10% kg.m ™3
— capacité thermique massique ¢, = 1.10% J K tkg™!
— conductivité thermique A =4 WK 1.m~!
1. Montrer que la température est solution de ’équation aux dérivées partielles

oT o*r
- _pZ -
ot 022
ou D est une constante dont on précisera la valeur numérique et I'unité.

2. Soit jg la densité de courant thermique (ou densité de flux thermique); établir I'équation aux dérivées partielles
dont elle est solution.

3. Au milieu du XIXieme siecle, Lord Kelvin a imaginé que la Terre a été formée & une température élevée uniforme
To au moment ¢ = 0. Instantanément, sa surface a été soumise a une température Ts. Depuis ce temps-la, la planete se
refroidirait. Lord Kelvin a modélisé ce refroidissement pour en déduire 1’age de formation de la Terre. Dans ’hypothese
de Lord Kelvin, quelle doit étre la valeur de la densité de flux thermique en z = 0 lorsque ¢ tend vers zéro, et lorsqu’il
tend vers +o00 7 Quelle doit étre la valeur de la densité de flux thermique & une profondeur z non nulle lorsque ¢ tend
vers zéro, et lorsqu’il tend vers +oo ?

4. La solution proposée par Lord Kelvin :

0(t) = ——2 ~
zZt)=——exp | —= |,
e v/ Dt p 4Dt
ou t est le temps écoulé depuis la formation de la Terre est-elle satisfaisante ? Représenter graphiquement la valeur
absolue de la densité de flux thermique, en fonction de la profondeur pour deux dates différentes.

5. Les parametres du probleme sont Ty — T, A, p et ¢,. On suppose que
A=a(Ty— TS)O‘)\Bp"’cg

ou a,a, 3,7 et § sont des constantes sans dimensions. Calculer «, 3, et d par analyse de 'homogénéité de la formule
de Lord Kelvin.

6. Par un raisonnement que ’on ne cherchera pas a reproduire, on peut montrer que a = % Exprimer la valeur du

gradient thermique en surface de la Terre.

7. Lord Kelvin a admis que Ty —Tg était de ’ordre de 1000 & 2000 K ; 'augmentation de température avec la profondeur
mesurée dans les mines indiquant un gradient thermique proche de 30 K.km~*!, quel 4ge de la Terre Lord Kelvin a-t-il
déduit de son modele ?

8. Que pensez vous de cette estimation ?
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Résolution de probleme

1. Survie en igloo

Quelle épaisseur e faut-il donner a un igloo pour
survivre a 'intérieur ?

Données :

e D =4 m diametre intérieur de l'igloo,

e par son métabolisme, un étre humain dégage
une puissance de Py = 50 W,
bien couvert, il survit & T;,; = 10°C,
dehors, il fait T,,; = —20°C,
la conductivité thermique de la glace est A =
0,056 W.K-tm~1.

Laplacien d’un champ scalaire en coordonnées sphériques :
10 of 1 0 (. Of 1 9*f
Af=—— (== _— 0— —_—
! r2ar <T 6r)+r2sin060 <Sm 80>+r2sin298¢2
2. Cuisson des ceufs

La cuisson d'un ceuf de poule a la coque dure environ 3 minutes. Un ceuf moyen a une masse comprise entre 53 g et
63 g.
Quelle serait la durée pour faire cuire a la coque un ceuf d’autruche, de masse comprise entre 1,2 kg et 1,8 kg?



