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Diffusion thermique

Applications directes du cours

1 Montrer par un bilan, puis directement à partir de l’équation de conservation, qu’en régime stationnaire et sans
terme source, à 1D, le flux à travers toute section S de la barre est conservé : Φth(x) = Φ0.

2 Montrer, à partir de l’équation de conservation, qu’en régime stationnaire et sans terme source, le flux à travers
toute surface fermée est nul.

3 Un artisan verrier chauffe le milieu d’un tube en verre (Dth ≃ 10−6 m2.s−1) de longueur 40 cm pour pouvoir
y créer un coude. Pendant combien de temps environ peut-il tenir à pleines mains les extrémités du tube sans
se brûler ?

4 On accole bout à bout 2 tiges de même section, de longueurs ℓ1 et ℓ2, de conductivité thermique respective-
ment λ1 et λ2, dont les extrémités sont maintenues respectivement à T1,0 et T2,0. On suppose l’ensemble isolé
thermiquement.
Quelle est la température de la jonction en régime stationnaire ?

5 Comparer, en ordre de grandeur, la résistance thermique d’un vitrage simple en verre d’épaisseur e et celle d’un
double vitrage constitué de 2 couches de verre d’épaisseur e/3 séparées par un espace d’épaisseur e/3 rempli
d’air.

1 cf cours. 2 Théorème d’Ostrogradski. 3 τ ≃ L2

D
, τ ≃ 4.104. 4 Ti =

ℓ1λ2T2,0 + ℓ2λ1T1,0

ℓ2λ1 + ℓaλ2
. 5 Rth,D ≃ 7Rth,s

../../..

Exercices

1. Température d’une interface

On considère un mur d’épaisseur e1 = 25 cm. Sur ce mur est appliqué un isolant d’épaisseur e2 = 5 cm. Les conductivités
thermiques du mur et de l’isolant sont respectivement λ1 = 5 W.m−1.K−1 et λ2 = 0, 05 W.m−1.K−1 La température
extérieure du mur est θ2 = −10o C ; la température intérieure de la pièce à la surface de l’isolant est θ1 = 20oC.
Exprimer la température θi à l’interface mur-isolant.

2. Vitres d’un wagon

Les vitres d’un wagon ont une épaisseur L, une aire totale S et une conductivité thermique λ. Leur surface extérieure
est à la température Te et leur surface intérieure à la température Ti.
On se placera dans tout l’exercice en régime stationnaire.

1. Établir l’expression du champ de température T (x) au sein de la vitre.

2. On tient compte des transferts conducto-convectifs à l’aide de la loi de Newton qui donne le transfert thermique
entre un solide de température de surface Ts et un fluide de température Tf pendant dt :

δQ = h · S(Ts − Tf )dt

On donne T1 la température intérieure et T2 la température extérieure. En déduire les températures Ti et Te.
Application numérique.

3. Enfin on tient compte du bilan de rayonnement thermique reçu par la surface extérieure avec une puissance
surfacique φs.
En déduire les nouvelles valeurs des températures Ti et Te. Application numérique.
Quelle doit être la puissance thermique de réfrigération du wagon pour maintenir sa température à 20oC?
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Données : T1 = 20oC ; T2 = 35oC ; λ = 0, 10 S.I. ; h = 10 S.I. ; φs = 200 W.m−2 ; L = 1, 0 cm. ; S = 20 m2.

3. Transferts thermiques dans un barreau

On considère un barreau cylindrique métallique de rayon R, de section σ, de longueur L et de conductivité thermique
λ. La température à l’extrémité x = 0 est T1. Partout ailleurs, à l’extérieur du cylindre, la température est Te. La
puissance cédée à l’extérieur par l’élément de cylindre de longueur dx et de section σ est

dP = h(T (x)− Te)dx

1. Établir l’équation différentielle vérifiée par T (x).

2. Donner l’expression de T (x) dans l’approximation où L est très grand. Préciser la condition de validité de cette
approximation.

3. On prend deux barreaux cylindriques de même géométrie, l’un en cuivre (λCu), l’autre en étain (λSn). On les
recouvre de paraffine, qui fond à 60oC. Sur le barreau de cuivre, la paraffine fond à l’abscisse x1, et sur celui
d’étain, elle fond à l’abscisse x2. Déterminer (λSn).

Données numériques : (λCu) = 390 W.m−1.K−1 ; x1 = 30, 0 cm ; x2 = 12, 4 cm.

4. Calculer la puissance dissipée par deux méthodes différentes.

4. Diffusion thermique en présence d’effet Joule

Un cylindre métallique (de conductivités électrique et thermique γ et λ) de section S et de longueur L est parcouru
longitudinalement par un courant d’intensité I. On suppose que les extrémités sont maintenues aux températures T0

et T1 et que sa surface latérale est calorifugée.

1. Que vaut la puissance dissipée par effet Joule par unité de volume ?

2. Établir l’équation de la conduction de la chaleur sachant que l’on adopte l’approximation d’un problème unidi-
mensionnel, avec terme source, en régime stationnaire.

3. En déduire la loi d’évolution spatiale de la température en fonction de l’abscisse.

4. Examiner les cas particuliers où I = 0, puis T0 = T1. Tracer les courbes T (x) dans les deux cas et les commenter.

5. Calculer le flux thermique aux deux extrémités et commenter.

5. Étude thermique d’un barreau d’uranium

Un barreau d’uranium servant de ”combustible nucléaire” a un diamètre D = 29 mm. Ce barreau d’uranium est le siège
d’une réaction nucléaire qui dégage une puissance thermique par unité de volume P = 700 MW.m−3. La conductivité
thermique de l’uranium est λ = 27 W.m−1.K−1.

1. La température sur la surface latérale du barreau est maintenue à la valeur θ0 = 200oC.

(a) Déterminer la répartition de température dans le barreau dans l’approximation où le barreau est très long.

(b) Calculer numériquement la valeur maximale θmax de la température dans le barreau.

2. En fait, l’uranium fond à la température θf = 1132oC. Pour éviter la fusion du barreau, on prend une géométrie
différente : le cylindre est creux, de diamètre intérieur D′ = 22 mm, le diamètre extérieur D = 29 mm étant
conservé.

(a) Déterminer la répartition de température dans le barreau.

(b) Calculer numériquement la valeur maximale θ′max de la température dans le barreau. Conclure.

6. Création d’entropie dans un solide indilatable

Dans un milieu de température non homogène, on définit un vecteur j⃗Q, densité de flux thermique, dont le flux à
travers une surface quelconque est égal au transfert thermique à travers cette surface par unité de temps.
On note λ le coefficient de conductivité thermique du matériau, que l’on suppose indépendant de la température, et
uniforme dans tout le solide.
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1. (a) Montrer par un bilan énergétique que

div j⃗Q + ρc
∂ T

∂ t
= 0.

(b) En déduire que si j⃗Q obéit à la loi de Fourier, T est solution d’une équation aux dérivées partielles que l’on
établira.

2. (a) Exprimer la variation d’entropie de l’élément de volume dτ pendant l’intervalle de temps dt.

(b) Intégrer cette expression sur tout le volume du solide ; en identifiant à l’expression dS = δiS +
δQ

T
, calculer

l’entropie créée pendant l’intervalle de temps [t, t+ dt] dans tout le solide.

(c) En déduire l’entropie σS créée par unité de volume et par unité de temps.

On donne : S(T, V ) = S(T0, V0) + C ln

(
T

T0

)

7. Diffusion thermique et mammifères marins

On considère un mammifère marin modélisé par une sphère de rayon R plongée dans l’eau. Ses cellules sont le siège
de réactions exothermiques qui produisent une puissance volumique pV . Ceci produit une puissance totale P qui
maintient le mammifère à température constante. On note λ la conductivité thermique de l’eau (pour r > R) et T0 la
température dans l’eau, à l’infini. On se place en régime stationnaire.

1. Déterminer l’expression de la puissance totale P dégagé par le mammifère en fonction de pV et R.

2. Établir l’expression du vecteur densité de courant thermique en r > R en fonction de pV , r et R.

3. Déterminer l’expression de la température T (r) à une distance r du centre du mammifère, en fonction de T0, λ
et P. En déduire la température cutanée Tc de l’animal en r = R.

4. Exprimer la puissance P en fonction de Tc, T0, λ et R.

5. Quelle doit être la valeur de P pour avoir Tc = 30°C avec R = 25 cm.

6. Expliquer pourquoi il ne peut pas exister de petit mammifère marin dans l’eau. Ce raisonnement est-il valable
sur Terre ?

Données : λair = 0, 003 W.K−1.m−1 ; λeau = 5, 0 · 10−1 W.K−1.m−1 ; T0 = 10°C.

8. Lac gelé

L’eau liquide d’un lac est à la température de congélation Te = 273 K. L’air au dessus du lac est à température
constante Ta = 263 K. Sans glace à t = 0, le lac se couvre progressivement d’une couche d’épaisseur ℓ(t). La glace
possède une masse volumique µ, une conductivité thermique λ, une chaleur latente de fusion massique Lf et une
capacité thermique négligeable. La puissance thermique échangée à l’interface air-glace par unité de surface est

Pth = h(T0(t)− Ta)

où T0(t) est la température de la glace au voisinage de l’air.

1. Déterminer la distribution de température T (x, t) dans la glace en fonction de T0(t), Te, ℓ(t) et x.

2. Déterminer deux expressions du flux thermique traversant la couche de glace en fonction de ℓ(t), T0(t), Ta et
Te.

3. Établir deux relations entre ℓ(t) et T0(t). En déduire l’équation différentielle vérifiée par ℓ(t).

On posera ℓ0 =
λ

h
et τ =

λµLf

2h2(Te − Ta)
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4. Déterminer ℓ(t) et T0(t). Donner les valeurs numériques de ℓ0, τ et
dℓ

dt
.

5. Comment évolue la température à la surface du lac ?

Données : µ = 0, 90 · 103 kg·m−3, λ = 2, 1 W·m−1·K−1, Lf = 334 kJ·kg−1 et h = 42 W·m−2·K−1.

9. Estimation de l’âge de la Terre par Lord Kelvin

On néglige la sphéricité de la planète et on admet que le seul mécanisme énergétique dans le sol est le transfert
thermique diffusif. On admet que la température ne dépend que de la profondeur z comptée positivement et du temps
t.

On prendra les valeurs numériques suivantes
— masse volumique ρ = 2, 8.103 kg.m−3

— capacité thermique massique cp = 1.103 J.K−1.kg−1

— conductivité thermique λ = 4 W.K−1.m−1

1. Montrer que la température est solution de l’équation aux dérivées partielles

∂T

∂t
= D

∂2T

∂z2

où D est une constante dont on précisera la valeur numérique et l’unité.

2. Soit jQ la densité de courant thermique (ou densité de flux thermique) ; établir l’équation aux dérivées partielles
dont elle est solution.

3. Au milieu du XIXième siècle, Lord Kelvin a imaginé que la Terre a été formée à une température élevée uniforme
T0 au moment t = 0. Instantanément, sa surface a été soumise à une température TS . Depuis ce temps-là, la planète se
refroidirait. Lord Kelvin a modélisé ce refroidissement pour en déduire l’âge de formation de la Terre. Dans l’hypothèse
de Lord Kelvin, quelle doit être la valeur de la densité de flux thermique en z = 0 lorsque t tend vers zéro, et lorsqu’il
tend vers +∞ ? Quelle doit être la valeur de la densité de flux thermique à une profondeur z non nulle lorsque t tend
vers zéro, et lorsqu’il tend vers +∞ ?

4. La solution proposée par Lord Kelvin :

jQ(z, t) = − A√
Dt

exp

(
− z2

4Dt

)
,

où t est le temps écoulé depuis la formation de la Terre est-elle satisfaisante ? Représenter graphiquement la valeur
absolue de la densité de flux thermique, en fonction de la profondeur pour deux dates différentes.

5. Les paramètres du problème sont T0 − TS , λ, ρ et cp. On suppose que

A = a(T0 − TS)
αλβργcδp

où a, α, β, γ et δ sont des constantes sans dimensions. Calculer α, β, γ et δ par analyse de l’homogénéité de la formule
de Lord Kelvin.

6. Par un raisonnement que l’on ne cherchera pas à reproduire, on peut montrer que a = 1√
π
. Exprimer la valeur du

gradient thermique en surface de la Terre.

7. Lord Kelvin a admis que T0−TS était de l’ordre de 1000 à 2000 K ; l’augmentation de température avec la profondeur
mesurée dans les mines indiquant un gradient thermique proche de 30 K.km−1, quel âge de la Terre Lord Kelvin a-t-il
déduit de son modèle ?

8. Que pensez vous de cette estimation ?
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Résolution de problème

1. Survie en igloo

Quelle épaisseur e faut-il donner à un igloo pour
survivre à l’intérieur ?

Données :
• D = 4 m diamètre intérieur de l’igloo,
• par son métabolisme, un être humain dégage
une puissance de P0 = 50 W,

• bien couvert, il survit à Tint = 10oC,
• dehors, il fait Text = −20oC,
• la conductivité thermique de la glace est λ =
0, 05 W.K−1.m−1.

Laplacien d’un champ scalaire en coordonnées sphériques :

∆f =
1

r2
∂

∂ r

(
r2

∂ f

∂ r

)
+

1

r2 sin θ

∂

∂ θ

(
sin θ

∂ f

∂ θ

)
+

1

r2 sin2 θ

∂2 f

∂ φ2

2. Cuisson des œufs

La cuisson d’un œuf de poule à la coque dure environ 3 minutes. Un œuf moyen a une masse comprise entre 53 g et
63 g.
Quelle serait la durée pour faire cuire à la coque un œuf d’autruche, de masse comprise entre 1,2 kg et 1,8 kg ?
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