TP1 Python - Marche aléatoire PC*

Partie A — Marche aléatoire

I - Le programme

Domaines numériques Capacités exigibles

1. Tableaux

Tableaux a une ou deux dimensions. | Choisir une structure de données appropriée a la modélisation d’un
probleme physique.

Réaliser des opérations algébriques simples sur des tableaux.

Utiliser les fonctions de base de la bibliotheque numpy (leurs
spécifications étant fournies) pour manipuler des tableaux.

Contenu thématique Capacité numérique
Approche microscopique du | A laide d’un langage de programmation, simuler la marche au
phénomene de diffusion. hasard d’un grand nombre de particules a partir d’'un centre et

caractériser ’étalement spatial de cet ensemble de particules au
cours du temps.

II - Les outils python

1 - Les bibliothéques a importer

— numpy

Pour créer des tableaux et pour le tirage aléatoire
— matplotlib.pyplot

pour les représentations graphiques

2 - Les commandes utiles

Création de tableaux :
— A partir d’une liste. np.array([liste]) : crée un tableau & partir d’une liste.
— A partir d’un intervalle et d’un nombre d’éléments. np.linspace(start, end, nbre) : génere n valeurs
entre start et end.
— A partir d’un intervalle et d’un pas. np.arange(start, end, pas) : génére des valeurs entre start et
end (exclus) espacées du pas.
— Tableau de zéros : np.zeros(dim) crée un tableau de 0 de dimension dim.

Boucle for avec la fonction range() :
La fonction range() permet de générer une liste de parcours.
range(n) renvoi un itérateur de 0 a n-1.

TP1 Python - Marche aléatoire PC*

range(a,b) renvoie un itérateur avec a comme premier entier et b-1 comme dernier entier.
range(a,b,pas) renvoie l'entier a puis les entiers avec un intervalle pas jusqu’a b exclus.

Pour tracer des courbes :
plt.plot(x,y) pour créer le graphique
plt.show() pour afficher le graphique

Il existe aussi la commande mean de la bibliotheque NumPy.

IIT - Modéle de la marche au hasard unidimensionnelle

On dispose Ny particules dans un tuyau d’axe (Ox), de section S en x = 0 & la date ¢t = 0. Ces particules
diffusent selon une direction (Ox) avec un coefficient de diffusion D.

1 - Aspect théorique

1-a. Approche macroscopique

L’équation de diffusion des particules est de la forme :

on &% n
2t Paz

avec n(z,t) la densité particulaire.

Avec la condition initiale n(x,0) = 0 pour = # 0 et les conditions aux limites lim n(z,t) = 0, la densité
T—>00

particulaire a pour expression :
NO _a?
n(x7 t) = — ¢ 4Dt

SvV4arDt

On caractérise ’étalement des particules (noté r) par la distance quadratique moyenne des particules a
xz=0.

On a
v
r=+/(x?) = A / z?n(z,t)Sdz = V2Dt
0

1-b Approche microscopique

Pour étudier cette diffusion & 1’échelle microscopique, on exploite le modele de la marche aléatoire : les
particules se déplacent toutes d’'une méme distance £, soit vers la droite, soit vers la gauche, avec la méme
vitesse v (vitesse quadratique moyenne), chaque déplacement durant 7 = ¢/v.

Conséquence : les positions possibles pour les particules sont discretes x; = i avec i € Z et les particules se
déplacent aux instants t; = k7 avec k € N.

En notant p(x;, t;) la probabilité de trouver une particule a la position z; et a l'instant ¢; on a :

1
p(xi, ty) = = (P(@iz1, th—1) + P(@it1, th—1))
2

1-c. Lien entre les deux approches

TP1 Python - Marche aléatoire PC*

£ est tres petit devant les dimensions macroscopiques. Un passage au continu nous a permis d’établir que :

op _ 2 p
ot 21022’

avec p(z,t) la probabilité de trouver une particule en = & I'instant ¢.

2
Le rapprochement des deux points de vue nous permet d’écrire : D = o = fv/2. On a alors
T

£2
=t

r? = (z%)

2 - Mouvement d’une particule

On consideére dans un premier temps une particule qui part de x = 0 a ¢t = 0. On travaille avec des grandeurs

adimensionnées : z* = — et t* = —.
T

14

On note k le numéro du saut de la particule étudiée (k = t}). Le déplacement de la particule a chaque saut
vaut donc +1 et le pas de temps vaut 1.

Pour alléger les écritures, x; est la position de la particule apres le saut k.
Quelles sont les valeurs minimale et maximale de xj ?

X Ecrire une fonction un_saut qui modifie la position de particule pendant 1 saut et qui renvoie la nouvelle
position.
Vous utiliserez la bibliotheque random pour tirer aléatoirement +1 : np.random.choice([-1,1]).

X On s’intéresse a la séquence de déplacements de la particule lors de K = 50 sauts successifs. Créer deux
tableaux : un tableau pos_part qui contient les positions successives de la particule, xg,z1,...,Tx et un
tableau nbr_saut qui contient les numéros des sauts 0,1,..., K.

X Tracer I’évolution des positions en fonction du temps (ou du numéro du saut).
X Tracer plusieurs fois ce graphe, que constatez-vous ?

X Calculer la position moyenne de la particule des positions successives

ainsi que la moyenne des carrés des abscisses

A faire pour k = 10,20, 50, 100. Commentaires ?

3 - Etude de I’étalement pour N particules

On s’intéresse maintenant plus particulierement a I’étalement des particules au cours du temps. At= 0, on
place Ny particules en z = (. Chaque particule suit une marche aléatoire.

TP1 Python - Marche aléatoire PC*

X Créer un tableau qui va stocker les abscisses des Ny particules. Ce tableau est actualisé a chaque pas de
temps. En parallele, créer un tableau r2moyen qui va stocker les moyennes des carrés des abscisses a chaque
pas de temps.

X Tracer les valeurs de r2moyen en fonction du temps et superposer la courbe (/(x?) = t. Exécuter votre
programme sur 100 pas de temps avec 100, puis 1000 puis 10000 particules.

IV - Marche au hasard dans un plan

On dispose Ny particules a 'origine d’un plan a ¢ = 0. Ils diffusent avec un coefficient de diffusion D.

On veut étudier ’évolution avec le temps de la distance quadratique moyenne parcourue par les atomes :
r2moyen = (r?) = (22 + y2).

1 - Modele

Chaque atome fait une succession de pas de longueur ¢ accompli en une durée 7.
A chaque pas la direction du vecteur vitesse varie aléatoirement dans 'intervalle 0, 27.

2 - Implémentation en Python

Les tableaux numpy x et y stockent les coordonnées des particules a chaque instant.
La commande np.random.uniform(0,2*np.pi) permet de tirer aléatoirement une valeur entre 0 et 2.

r2moyen stocke la distance quadratique moyenne en fonction du temps.

2

X Vérifier que la loi 72 = —t est bien en accord avec votre simulation.
T

