
TP2 Python - Diffusion thermique PC* 2025-2026

Partie B – Diffusion thermique

I - Le programme

Domaines numériques Capacités exigibles

1. Tableaux

Tableaux à une ou deux dimensions. Choisir une structure de données appropriée à la modélisation d’un
problème physique.

Réaliser des opérations algébriques simples sur des tableaux.

Utiliser les fonctions de base de la bibliothèque numpy (leurs
spécifications étant fournies) pour manipuler des tableaux.

2. Équations différentielles et équations aux dérivées partielles

Équation de diffusion à une dimen-
sion.

Mettre en œuvre une méthode des différences finies explicite pour
résoudre l’équation de diffusion à une dimension en régime va-
riable.

Contenu thématique Capacité numérique

Équation de la diffusion thermique. Capacité numérique : à l’aide d’un langage de programmation,
résoudre l’équation de la diffusion thermique à une dimension par
une méthode des différences finies dérivée de la méthode d’Euler
explicite de résolution des équations différentielles ordinaires..

II - Les outils python

1 - Les bibliothèques à importer

— numpy
pour créer des tableaux.

— matplotlib.pyplot
pour les représentations graphiques.

2 - Les commandes utiles

Création de tableaux :
— À partir d’une liste. np.array([liste]) : crée un tableau à partir d’une liste.
— À partir d’un intervalle et d’un nombre d’éléments. np.linspace(start, end, nbre) : génère n valeurs

entre start et end.
— À partir d’un intervalle et d’un pas. np.arange(start, end, pas) : génère des valeurs entre start et

end (exclus) espacées du pas.
— Tableau de zéros : np.zeros(dim) crée un tableau de 0 de dimension dim.
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Boucle for avec la fonction range() :
La fonction range() permet de générer une liste de parcours.
range(n) renvoie un itérateur de 0 à n-1.
range(a,b) renvoie un itérateur avec a comme premier entier et b-1 comme dernier entier.
range(a,b,pas) renvoie un l’entier a puis des les entiers avec un intervalle pas jusqu’à b exclus.

Pour tracer des courbes :
plt.plot(x,y) pour créer le graphique
plt.show() pour afficher le graphique

III - Problème étudié

1 - Équation de diffusion

Nous étudions la diffusion thermique dans un barreau droit de section S et de longueur L. En l’absence de
terme de source, l’équation de diffusion thermique dans le barreau a pour expression :

∂ T

∂ t
= D

∂2 T

∂ x2
,

où T (M, t) = T (x, t) est le champ de température du barreau et D =
λ

µc
coefficient de diffusivité thermique.

2 - Les conditions aux limites

On envisagera trois types de conditions aux limites aux extrémités du domaine d’étude 0 ≤ x ≤ L :

• condition ”type Dirichlet” ou contact thermique parfait :
La valeur de T est imposée à une ou aux deux des extrémités du domaine :

T (0, t) = T0(t) et/ou T (L, t) = TL(t)

C’est le cas, par exemple, d’une barre en contact avec deux thermostats ;

• condition ”de Neumann” ou condition de flux :
Le flux thermique est imposé à une ou aux deux extrémités du domaine :

Φ0(t) = −λS
∂ T

∂ x
(0, t)

• condition mixte issue de la loi de Newton :
À l’interface solide-fluide (par exemple en x = L) il y a continuité du flux :

−λ
∂ T

∂ x
(L, t) = h(T (L, t)− Tair)

3 - Discrétisation

On passe du modèle continu au modèle discret (passage opposé à celui effectué lors de la marche aléatoire
à l’échelle microscopique).

Discrétisation spatiale : On divise le solide de longueur L en N domaines de longueur ∆x =
L

N
. On va donc

chercher les températures aux positions xi = i∆x avec i ∈ [0, 1, ..., N − 1, N ].
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Discrétisation temporelle : on divise le temps en ”pas de temps” : ∆t. Si on souhaite étudier la diffusion sur

une durée tmax = M∆t, on va l’étudier aux instants tk tels que tk = k∆t avec k ∈ [0, 1, ...,
tmax

∆t
= M ].

On passe de la fonction continue T (x, t) pour x ∈ [0, L] et t ∈ [0, tmax] à un ensemble de valeurs discrètes
Ti,k avec i ∈ [0, ..., N ] et k ∈ [0, ...,M ] telles que T (xi, tk) = Ti,k.

IV - Méthode des différences finies

1 - Approximation des dérivées par des différences finies

On discrétise l’équation de diffusion :
∂ T

∂ t
= D

∂2 T

∂ x2
.

Pour le premier terme :

∂ T

∂ t
(x, t) = lim

dt→0

T (x, t+ dt)− T (x, t)

dt
≃ T (x, t+∆t)− T (x, t)

∆t

Finalement, nous pouvons remplacer
∂ T

∂ t
(xi, tk) par

Ti,k+1 − Ti,k

∆t
.

Pour le second terme :

∂2 T

∂ x2
(x, t) =

∂

∂ x

(
∂ T

∂ x
(x, t)

)
≃ ∂

∂ x

(
T (x+∆x, t)− T (x, t)

∆x

)
≃

T (x+∆x, t)− T (x, t)

∆x
− T (x, t)− T (x−∆x)

∆x
∆x

On a donc :
∂2 T

∂ x2
(x, t) ≃ T (x+∆x, t)− 2T (x, t) + T (x−∆x)

(∆x)2

Nous pouvons remplacer
∂2 T

∂ x2
(xi, tk) par

Ti+1,k + Ti−1,k − 2Ti,k

(∆x)2
.

On obtient donc :
Ti,k+1 − Ti,k

∆t
= D

Ti+1,k + Ti−1,k − 2Ti,k

(∆x)2

Connaissant les températures à l’instant tk (l’ensemble des Ti,k pour i entre 0 et N) on peut en déduire les
températures à tk+1 par :

Ti,k+1 = Ti,k +
D∆t

∆x2
(Ti+1,k + Ti−1,k − 2Ti,k)

Remarque 1 : il faut faire attention aux conditions aux limites (i = 0 et i = N).

Remarque 2 : Ce schéma n’est stable que si
D∆t

(∆x)2
≤ 1

2
.

2 - Prise en compte des conditions aux limites

Le schéma précédent permet de calculer les températures Ti,k pour 1 ≤ i ≤ N − 1 autrement dit toutes les
températures à l’exception des bords (i = 0 et i = N).
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a) Condition de type Dirichlet

C’est la situation du contact thermique parfait, la température est fixée à l’une des extrémités (ou aux
deux) : T (0 ou L, t) = Tlim(t). On aura donc T0,k = Tlim0,k et/ou TL,k = TlimL,k pour tout k.

b) Condition de type Neumann

Dans cette situation, c’est le flux thermique qui est fixé : Φ(t), on a alors
∂ T

∂ x
(0, t) = − 1

λS
Φ0(t).

On admet que cela se traduit par :

T0,k+1 = T0,k + 2
D∆t

(∆x)2

[
T1,k − T0,k +

∆x

λS
Φ0(tk)

]

V - Application aux barreau droit isolé latéralement

Un étudie la diffusion thermique le long d’un barreau droit cylindrique de rayon a = 7, 5 mm, de longueur
L = 50 cm. Ce barreau est constitué de fer.

Données :
• conductivité thermique du fer λ ≃ 50 W.m−1.K−1,
• coefficient de transfert conducto-convectif h ≃ 10 W.m−2.K−1,
• masse volumique du fer µ = 7, 86.103 kg.m−3,
• capacité thermique massique du fer c = 444 J.K−1.kg−1.

Calculer D diffusivité thermique du fer.

1 - Barreau isolé latéralement avec deux thermostats aux extrémités

On étudie le régime transitoire d’un barreau, au départ à la température T0 = 20oC qui est mis en contact
à t = 0 avec un thermostat à la température T0 en x = 0 et T1 = 80oC en x = L.

On discrétise l’intervalle [0, L], en NX + 1 points régulièrement espacés d’un pas spatial dx. On souhaite
déterminer la température en chacun de ces points.

Q1. Donner le nombre d’intervalles spatiaux dans l’intervalle [0, L]. Donner l’expression de dx en fonction
des données du problème. En déduire l’abscisse xi du (i)-ème point.
Q2. À l’aide de la formule de Taylor-Young, équation (1), exprimer :
a. T (t+ dt, x), au premier ordre par rapport à t, dt étant l’incrément temporel ;
b. T (t, x− dx), au second ordre par rapport à x ;
c. T (t, x+ dx), au second ordre par rapport à x.

f(x) = f(a) +
f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 + o((x− a)2)

Q3. En déduire une expression de
∂2 T (x, t)

∂ x2
en fonction de dx, T (x, t), T (t, x− dx) et T (t, x+ dx).

La température à l’abscisse xi à une date tn sera notée : Tn
i .
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Q4. En reformulant le résultat des questions précédentes, déterminer une relation entre :

a. Tn+1
i , Tn

i ,
∂ T (x, t)

∂ t
et dt ;

b. Tn
i+1, T

n
i−1, T

n
i ,

∂2 T (x, t)

∂ x2
et dx.

Q5. À partir de l’équation de diffusion et Q4, montrer que :

Tn+1
i = dt ·D

(
Tn
i+1 + Tn

i−1 − 2Tn
i

(dx)2

)
+ Tn

i

Le code de l’algorithme 1 permet de déterminer les valeurs de température aux points de discrétisation.
Dans les questions suivantes, on cherchera à compléter les instructions manquantes (sur machine !).

Q6. Donner l’Instruction 1 permettant de définir la diffusivité thermique D.

Q7. L’équation de Q5. est-elle valable pour toute valeur de i ∈ {0 . . . NX} ?

Q8. Définir les incréments de temps et d’espace en précisant les Instruction 2.1 et Instruction 2.2. Nt

intervalles seront réalisés dans l’intervalle de temps [0; tmax].

Q9. Déduire des conditions aux limites les Instruction 3.1, Instruction 3.2, Instruction 3.3 et Instruction
3.4.

Q10. À partir de la question Q5., compléter Instructions 4.1, Instructions 4.2 et Instructions 4.3.

Tracer le champ des températures dans le barreau toutes les 100 s jusqu’au régime permanent.

2 - Barreau isolé latéralement avec flux fixes aux extrémités

Dans l’expérience du TP, la cellule Peltier génère un flux constant Φ0 = 2, 0 W. Reprendre la démarche
précédente avec cette nouvelle condition aux limites.
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