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Programme de colles
Physique PC* -

Semaine 14

Une colle comportera :
— une question de cours à traiter en moins de 15 minutes,
— un exercice.

Une question de cours non sue entrainera une note inférieure
à la moyenne.

Les démonstrations à savoir (questions de cours - non exhaus-
tives - typiques pouvant être posées par l’examinateur) sont mar-
quées en rouge et introduites par le symbole +.

Capacités numériques

Capacités numériques 8, 9 et
10

Résolution de l’équation de diffusion par une méthode
d’Euler explicite (la seule au programme).
Utilisation de Numpy.
Étude d’un mouvement dans une force centrale

Électromagnétisme 3

Conduction électrique dans
un conducteur ohmique

1 Loi d’Ohm locale dans un conduc-
teur ohmique

+ Connaître les hypothèses du modèle de Drude pour un
conducteur ohmique. Savoir redémontrer l’expression de
la conductivité électrique et connaître la loi d’Ohm locale.
2 Résistance d’une portion de conduc-

teur ohmique parallélépipédique
+ Savoir redémontrer l’expression de la résistance et
connaître son expression.

Exercice traité en TD : paratonnerre et résistance élec-
trique du sol.

Électromagnétisme 4

Magnétostatique
1 Propriétés de symétrie de B
1.1 Loi de Biot et Savart
Cette loi est hors-programme et non exigible mais donnée
ici afin de montrer l’analogie (et les différences) avec le
champ électrique.
1.2 Propriétés de symétrie de B
2 Équations intégrales et locales du

champ magnétostatique
2.1 Conservation du flux de B
2.2 Théorème d’Ampère
Ce théorème est bien sûr à connaître par cœur.
2.3 Linéarité des équations du champ magné-

tique
2.4 Propriétés topographiques du champ ma-

gnétostatique
3 Exemples de calculs de champs ma-

gnétostatiques
3.1 Fil rectiligne infini
+ Connaître l’expression du champ magnétique et sa dé-
monstration.

3.2 Câble rectiligne infini
+ Savoir démontrer l’expression du champ magnétique
en tout point de l’espace.
3.3 Solénoïde infini
+ Savoir démontrer l’expression du champ magnétique
en tout point de l’espace et connaître son expression par
cœur.
+ Savoir retrouver l’expression de l’inductance propre
du solénoïde long.
+ Savoir retrouver dans le cas du solénoïde l’expression
de la densité volumique d’énergie magnétique.
4 Forces de Lorentz et de Laplace (ré-

vision PCSI)
4.1 Force de Lorentz
4.2 Trajectoire d’une particule chargée dans

un champ électrique et magnétique uni-
forme

+ Savoir étudier la trajectoire de la particule avec la pro-
jection dans la base cartésienne et dans la base de Fré-
net.
4.3 Force de Laplace
4.4 Sonde à effet Hall
+ Savoir expliquer qualitativement l’effet Hall.
5 Dipôles magnétiques
5.1 Moment dipolaire magnétique
+ Définition du dipôle magnétique et du moment dipo-
laire magnétique + unité à connaître.
5.2 Résultante et moment des forces appliquées

sur le dipôle magnétique
5.3 Énergie potentielle d’un dipôle rigide dans

B extérieur
5.4 Champ magnétique créé par un dipôle ma-

gnétique
5.5 Dipôle magnétique d’un atome d’hydrogène
+ Retrouver le facteur gyromagnétique de l’électron dans
le cas du modèle planétaire de l’atome d’hydrogène.
+ Connaître la quantification de LZ , en déduire que la
composante selon z du moment magnétique est un mul-
tiple du magnéton de Bohr.
5.6 Origine du ferromagnétisme
Savoir expliquer qualitativement l’origine du ferroma-
gnétisme.
Savoir donner l’ordre de grandeur du moment magné-
tique volumique d’un ferromagnétique

Mécanique 2

Dynamique du point en
référentiel non galiléen

1 Changements de référentiels en mé-
canique classique

1.1 Notion de référentiel
1.2 Référentiel en translation
1.2.1 Rappel : Définition de la translation
1.2.2 Composition des mouvements
1.2.3 Composition des vitesses
Connaître la loi de composition des vitesses.

1.2.4 Composition des accélérations
Connaître la loi de composition des accélérations.
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1.2.5 Cas particulier de la translation rectiligne
uniforme : transformation de Galilée

1.2.6 Notion de point coïncident

1.3 Référentiels galiléens
Définition d’un référentiel galiléen, référentiels de Co-
pernic, de Kepler, géocentrique et terrestre.
1.4 Référentiel en rotation uniforme autour

d’un axe fixe
1.4.1 Définition de la rotation
1.4.2 Composition des mouvements
1.4.3 Composition des vitesses
1.4.4 Composition des accélérations
+ Connaître la composition des accélérations en utili-
sant le point coïncident. Savoir l’expression de la force de
Coriolis.
2 Loi de la quantité de mouvement -

Théorème du moment cinétique
2.1 Référentiel en translation
+ Savoir écrire le PFD et le TMC dans le cas d’un réfé-
rentiel non galiléen en translation. Connaître les expres-
sions des forces d’inertie d’entrainement et de Coriolis.
2.2 Référentiel en rotation uniforme autour

d’un axe fixe.
+ Savoir écrire le PFD et le TMC dans le cas d’un réfé-
rentiel non galiléen en translation. Connaître les expres-
sions des forces d’inertie d’entrainement et de Coriolis.
3 Étude énergétique en référentiel non

galiléen
3.1 Travail de la force de Coriolis dans un ré-

férentiel non galiléen
La force de Coriolis ne travaille pas.
3.2 Théorème de l’énergie cinétique
3.3 Calcul du travail de la force d’inertie d’en-

trainement dans 2 cas usuels
3.3.1 Cas d’un référentiel en translation rectiligne

uniformément accéléré par rapport au réfé-
rentiel galiléen

3.3.2 Cas d’un référentiel en rotation uniforme au-
tour d’un axe (Oz) fixe

+ Connaître l’expression de l’énergie potentielle d’en-
trainement ainsi que sa démonstration.

3.3.3 Théorème de l’énergie mécanique dans un
référentiel non galiléen

4 Référentiels géocentrique et terrestre
4.1 Caractère non galiléen du référentiel géo-

centrique
Les marées ont été abordées et le terme différentiel doit
savoir être redémontré
4.2 Caractère non galiléen du référentiel ter-

restre
4.2.1 Influence de la force d’inertie d’entrainement

- Champ de pesanteur
L’exercice ci-dessous peut-être considéré comme exercice
de cours.

Exercice :

On suppose que le référentiel géocentrique est gali-
léen (les marées sont négligées). La Terre tourne au-
tour de son axe Nord-Sud dans le référentiel géocen-
trique à la vitesse angulaire ΩT constante. Le rayon

de la Terre est noté RT = 6300km et son centre est
noté T. La masse de la Terre est MT = 6,0.1024 kg
et la constante de gravitation universelle vaut G =
6,67.10−11 SI.
On se place à la surface de la Terre en un point O
situé à la latitude λ. On définit localement un repère
(Oxyz) avec z situé selon l’axe (TO). −→uy est orienté
vers le Nord et −→ux vers l’Est.

1. Donner la valeur numérique de ΩT .

Considérons une masse m accrochée par un fil
de longueur l à un point A fixe dans le réfé-
rentiel terrestre situé à la surface de la Terre.
Le poids m−→g est défini comme l’opposé de la
force de tension exercée par le fil sur la masse
à l’équilibre. −→g est le champ de pesanteur lo-
cal.
Dit de manière différente, on définit la verti-
cale localement par un fil à plomb : la verti-
cale est donnée par la direction du fil à plomb
et est donc dans la direction de −→g .

2. En étudiant l’équilibre de la masse accrochée
au fil, déterminer l’expression de −→g en fonc-
tion de G, MT , RT , ΩT , λ et de vecteurs uni-
taires que l’on précisera. Le champ de pesan-
teur est-il identique au champ gravitationnel ?

3. Montrer que la contribution de l’accélération
d’entrainement dans l’expression de −→g est faible
devant l’accélération due au champ gravita-
tionnel.

4. Pour quelle latitude l’intensité de la pesan-
teur est-elle la plus faible ? Que vaut-elle ? Pour
quelle latitude l’intensité de la pesanteur est-
elle la plus élevée? Que vaut-elle ?

5. Pour λ = 45◦, déterminer l’ordre de grandeur
de l’angle entre −→g et −→uz.

4.2.2 Influence de la force d’inertie de Coriolis -
Chute libre et déviation vers l’Est

L’exercice ci-dessous peut-être considéré comme exercice
de cours.

Exercice :

La Terre tourne autour de son axe Nord-Sud dans
le référentiel géocentrique à la vitesse angulaire ΩT
constante. Le centre de la Terre est noté T.
On se place à la surface de la Terre en un point O
situé à la latitude λ. On définit localement un repère
(Oxyz) avec z situé selon l’axe (TO). −→uy est orienté
vers le Nord et −→ux vers l’Est.
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On creuse au niveau de O un puits dans la direction−→uz de profondeur h. On lâche une masse m ponc-
tuelle en O sans vitesse initiale. On supposera que
le champ de pesanteur −→g est selon −→uz. On néglige
les frottements de l’air.

1. La vitesse de la masse est dans le cas géné-
ral −→v = x̊−→ux + ẙ−→uy + z̊−→uz. Déterminer les trois
composantes de la force d’inertie de Coriolis.

2. On suppose que les mouvements selon x et
y se font à des vitesses négligeables devant
celle de la chute libre. En déduire une simpli-
fication de la force de Coriolis.

3. Déterminer l’instant τ auquel la masse touche
le fond du puits. La masse touche-t-elle le fond
du puits à la verticale de O ? Si non, dans quel
sens s’est-elle déplacée? Quelle est la distance
D entre le point d’impact de la masse et le
point la verticale de O au fond du puits ? Faire
l’application numérique pour h = 160 m et une
latitude de 45◦. La valeur expérimentale ob-
tenue est D = 2,8 cm.

Autres exercices pouvant être posés en question de cours :

Exercice :

Dans le film de François Truffaut "Les 400 coups",
le héros, Antoine Doinel, se rend à une fête foraine
et pénètre dans un des manèges appelé "le rotor",
constitué d’un énorme cylindre vertical qui tourne
autour de son axe. Les passagers pénètrent à l’inté-
rieur et s’installent contre la paroi du cylindre. Le
cylindre est mis en rotation, d’abord lentement puis
de plus en plus vite. Quand la vitesse de rotation
est suffisamment grande, le plancher est retiré et les
passagers restent collés contre la paroi du cylindre.

1. Expliquer pourquoi les passagers restent col-
lés contre la paroi. Quelle est la force qui les
empêche de tomber? Est-ce sans danger? Que
ressent Antoine Doinel quand il essaie de dé-
coller un bras ou une jambe?

2. On appelle µ le coefficient de frottement. Dé-
terminer la valeur minimale de la vitesse de
rotation du cylindre, en fonction du rayon a
du cylindre, de g et de µ, à partir de laquelle
on peut retirer le plancher.

3. Application numérique : a = 4,0m, µ = 0,4.
Calculer la vitesse minimale de rotation du
cylindre en tours par minute.

Exercice :

Estimer la force d’inertie de Coriolis du TGV Paris-
Toulouse lorsqu’il se déplace vers le sud.

Pas de mécanique des fluides en référentiel non ga-
liléen cette semaine


