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Programme de colles
Physique PC* -

Semaine 16

Une colle comportera :
— une question de cours à traiter en moins de 15 minutes,
— un exercice.

Une question de cours non sue entrainera une note inférieure
à la moyenne.

Les démonstrations à savoir (questions de cours - non exhaus-
tives - typiques pouvant être posées par l’examinateur) sont mar-
quées en rouge et introduites par le symbole +.

Capacités numériques

Capacités numériques 8, 9,
10 et 11

Résolution de l’équation de diffusion par une méthode
d’Euler explicite (la seule au programme).
Utilisation de Numpy.
Étude d’un mouvement dans une force centrale
Étude de la déviation vers l’Est.

Mécanique 2

Dynamique du point en
référentiel non galiléen

1 Changements de référentiels en mé-
canique classique

1.1 Notion de référentiel
1.2 Référentiel en translation
1.2.1 Rappel : Définition de la translation
1.2.2 Composition des mouvements
1.2.3 Composition des vitesses
Connaître la loi de composition des vitesses.

1.2.4 Composition des accélérations
Connaître la loi de composition des accélérations.

1.2.5 Cas particulier de la translation rectiligne
uniforme : transformation de Galilée

1.2.6 Notion de point coïncident

1.3 Référentiels galiléens
Définition d’un référentiel galiléen, référentiels de Co-
pernic, de Kepler, géocentrique et terrestre.
1.4 Référentiel en rotation uniforme autour

d’un axe fixe
1.4.1 Définition de la rotation
1.4.2 Composition des mouvements
1.4.3 Composition des vitesses
1.4.4 Composition des accélérations
+ Connaître la composition des accélérations en utili-
sant le point coïncident. Savoir l’expression de la force de
Coriolis.

2 Loi de la quantité de mouvement -
Théorème du moment cinétique

2.1 Référentiel en translation
+ Savoir écrire le PFD et le TMC dans le cas d’un réfé-
rentiel non galiléen en translation. Connaître les expres-
sions des forces d’inertie d’entrainement et de Coriolis.
2.2 Référentiel en rotation uniforme autour

d’un axe fixe.
+ Savoir écrire le PFD et le TMC dans le cas d’un réfé-
rentiel non galiléen en translation. Connaître les expres-
sions des forces d’inertie d’entrainement et de Coriolis.
3 Étude énergétique en référentiel non

galiléen
3.1 Travail de la force de Coriolis dans un ré-

férentiel non galiléen
La force de Coriolis ne travaille pas.
3.2 Théorème de l’énergie cinétique
3.3 Calcul du travail de la force d’inertie d’en-

trainement dans 2 cas usuels
3.3.1 Cas d’un référentiel en translation rectiligne

uniformément accéléré par rapport au réfé-
rentiel galiléen

3.3.2 Cas d’un référentiel en rotation uniforme au-
tour d’un axe (Oz) fixe

+ Connaître l’expression de l’énergie potentielle d’en-
trainement ainsi que sa démonstration.

3.3.3 Théorème de l’énergie mécanique dans un
référentiel non galiléen

4 Référentiels géocentrique et terrestre
4.1 Caractère non galiléen du référentiel géo-

centrique
Les marées ont été abordées et le terme différentiel doit
savoir être redémontré
4.2 Caractère non galiléen du référentiel ter-

restre
4.2.1 Influence de la force d’inertie d’entrainement

- Champ de pesanteur
L’exercice ci-dessous peut-être considéré comme exercice
de cours.

Exercice :

On suppose que le référentiel géocentrique est gali-
léen (les marées sont négligées). La Terre tourne au-
tour de son axe Nord-Sud dans le référentiel géocen-
trique à la vitesse angulaire ΩT constante. Le rayon
de la Terre est noté RT = 6300km et son centre est
noté T. La masse de la Terre est MT = 6,0.1024 kg
et la constante de gravitation universelle vaut G =
6,67.10−11 SI.
On se place à la surface de la Terre en un point O
situé à la latitude λ. On définit localement un repère
(Oxyz) avec z situé selon l’axe (TO). −→uy est orienté
vers le Nord et −→ux vers l’Est.
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1. Donner la valeur numérique de ΩT .

Considérons une masse m accrochée par un fil
de longueur l à un point A fixe dans le réfé-
rentiel terrestre situé à la surface de la Terre.
Le poids m−→g est défini comme l’opposé de la
force de tension exercée par le fil sur la masse
à l’équilibre. −→g est le champ de pesanteur lo-
cal.
Dit de manière différente, on définit la verti-
cale localement par un fil à plomb : la verti-
cale est donnée par la direction du fil à plomb
et est donc dans la direction de −→g .

2. En étudiant l’équilibre de la masse accrochée
au fil, déterminer l’expression de −→g en fonc-
tion de G, MT , RT , ΩT , λ et de vecteurs uni-
taires que l’on précisera. Le champ de pesan-
teur est-il identique au champ gravitationnel ?

3. Montrer que la contribution de l’accélération
d’entrainement dans l’expression de −→g est faible
devant l’accélération due au champ gravita-
tionnel.

4. Pour quelle latitude l’intensité de la pesan-
teur est-elle la plus faible ? Que vaut-elle ? Pour
quelle latitude l’intensité de la pesanteur est-
elle la plus élevée? Que vaut-elle ?

5. Pour λ = 45◦, déterminer l’ordre de grandeur
de l’angle entre −→g et −→uz.

4.2.2 Influence de la force d’inertie de Coriolis -
Chute libre et déviation vers l’Est

L’exercice ci-dessous peut-être considéré comme exercice
de cours.

Exercice :

La Terre tourne autour de son axe Nord-Sud dans
le référentiel géocentrique à la vitesse angulaire ΩT
constante. Le centre de la Terre est noté T.
On se place à la surface de la Terre en un point O
situé à la latitude λ. On définit localement un repère
(Oxyz) avec z situé selon l’axe (TO). −→uy est orienté
vers le Nord et −→ux vers l’Est.

On creuse au niveau de O un puits dans la direction−→uz de profondeur h. On lâche une masse m ponc-
tuelle en O sans vitesse initiale. On supposera que
le champ de pesanteur −→g est selon −→uz. On néglige
les frottements de l’air.

1. La vitesse de la masse est dans le cas géné-
ral −→v = x̊−→ux + ẙ−→uy + z̊−→uz. Déterminer les trois
composantes de la force d’inertie de Coriolis.

2. On suppose que les mouvements selon x et
y se font à des vitesses négligeables devant
celle de la chute libre. En déduire une simpli-
fication de la force de Coriolis.

3. Déterminer l’instant τ auquel la masse touche
le fond du puits. La masse touche-t-elle le fond
du puits à la verticale de O ? Si non, dans quel
sens s’est-elle déplacée? Quelle est la distance
D entre le point d’impact de la masse et le
point la verticale de O au fond du puits ? Faire
l’application numérique pour h = 160 m et une
latitude de 45◦. La valeur expérimentale ob-
tenue est D = 2,8 cm.

Autres exercices pouvant être posés en question de cours :

Exercice :

Dans le film de François Truffaut "Les 400 coups",
le héros, Antoine Doinel, se rend à une fête foraine
et pénètre dans un des manèges appelé "le rotor",
constitué d’un énorme cylindre vertical qui tourne
autour de son axe. Les passagers pénètrent à l’inté-
rieur et s’installent contre la paroi du cylindre. Le
cylindre est mis en rotation, d’abord lentement puis
de plus en plus vite. Quand la vitesse de rotation
est suffisamment grande, le plancher est retiré et les
passagers restent collés contre la paroi du cylindre.

1. Expliquer pourquoi les passagers restent col-
lés contre la paroi. Quelle est la force qui les
empêche de tomber? Est-ce sans danger? Que
ressent Antoine Doinel quand il essaie de dé-
coller un bras ou une jambe?

2. On appelle µ le coefficient de frottement. Dé-
terminer la valeur minimale de la vitesse de
rotation du cylindre, en fonction du rayon a
du cylindre, de g et de µ, à partir de laquelle
on peut retirer le plancher.

3. Application numérique : a = 4,0m, µ = 0,4.
Calculer la vitesse minimale de rotation du
cylindre en tours par minute.

Exercice :

Estimer la force d’inertie de Coriolis du TGV Paris-
Toulouse lorsqu’il se déplace vers le sud.

5 Mécanique des fluides en référen-
tiels non galiléens

5.1 Statique des fluides
+ Forme de la surface d’un liquide pour un référentiel
en translation uniformément accéléré par rapport au ré-
férentiel terrestre.
+ Forme de la surface d’un liquide pour un référentiel en
rotation uniforme autour d’un axe fixe dans le référentiel
terrestre.
5.2 Écoulement dans un référentiel non gali-

léen
Un exercice a été traité en TD pour introduire la géné-
ralisation des relations de Bernoulli mais tout exercice
devra être guidé.

Électromagnétisme 5

Équations de Maxwell
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1 Équations de Maxwell
1.1 Formulation
+ Connaître par cœur les équations de Maxwell ainsi
que leur nom
1.2 Remarques
1.3 Conservation de la charge électrique
+ Savoir retrouver l’équation locale de conservation de
la charge à partir des équations de Maxwell
2 Expression intégrale des équations

de Maxwell
Savoir retrouver les expressions intégrales. Savoir retrou-
ver en particulier la loi de Faraday.
3 Relations de passage
Hors-programme.
4 Notion de potentiel vecteur
Hors-programme.
5 Aspects énergétiques
5.1 Puissance volumique reçue par la matière

de la part du champ
+ Savoir remontrer que dP/dV =−→

j .
−→
E

Application à l’effet Joule, démonstration de P = RI2 pour
un barreau parallélépipédique.
5.2 Équation locale de conservation de l’éner-

gie électromagnétique
La démonstration des expressions du vecteur de Poyn-
ting et de la densité volumique d’énergie électromagné-
tique est faite mais est hors-programme.
+ Les expressions sont par contre à connaître par cœur.

Électromagnétisme 6

ARQS - Induction
électromagnétique

1 ARQS
Définition, critère de validité de l’ARQS, conséquences
sur les équations de Maxwell.
2 Circuit fixe dans un champ magné-

tique dépendant du temps
2.1 Loi de Faraday
2.2 Principe de modération de Lenz
+ La fém induite tend à s’opposer par ses conséquences
aux phénomènes qui lui ont donné naissance.
3 Inductance propre - Inductance mu-

tuelle
Définitions, exercice d’application sur le couplage entre
deux circuits. Application au transformateur.
4 Circuit mobile dans un champ ma-

gnétique stationnaire
Exercice du rail de Laplace, principe de l’alternateur.

Ondes 3

Ondes acoustiques dans les
fluides

1 Équation de propagation d’une onde
acoustique dans un fluide

1.1 Hypothèses d’étude - approximation acous-
tique

+ Les 5 hypothèses d’étude doivent être connues, en par-
ticulier l’approximation acoustique

1.2 Obtention de l’équation de d’Alembert pour
la surpression

+ Savoir linéariser l’équation d’Euler, l’équation de conser-
vation de la masse et savoir utiliser le coefficient de com-
pressibilité isentropique (dont la définition doit être connue)
afin d’obtenir l’équation de d’Alembert pour la surpres-
sion.
L’établissement de l’équation de d’Alembert pour la vi-
tesse a été vu mais est à la limite du programme.
Connaître l’expression de la célérité d’une onde acous-
tique dans un fluide et discuter son expression (compres-
sibilité du fluide, influence de l’inertie).
1.3 Célérité dans le cas d’un gaz parfait
+ Savoir redémontrer l’expression de la célérité dans le
cas du gaz parfait.
Connaître les ordres de grandeurs de la célérité dans un
gaz et dans un fluide.
1.4 Solution de l’équation de d’Alembert
Rappels de début d’année sur la solution sous forme d’une
superposition de deux OPP. Forme de l’OPPM.
1.5 Impédance acoustique
+ Savoir retrouver l’expression de l’impédance acous-
tique dans le cas d’une OPPM.
1.6 Cas de l’onde sphérique
+ Champ proche, champ lointain, expression de v obte-
nue à partir de l’expression de p donnée, impédance de
l’onde.
2 Aspects énergétiques
2.1 Vecteur densité de flux de puissance acous-

tique
+ Connaître l’expression de ce vecteur

−→
Π = p−→v et sa si-

gnification physique.
2.2 Équation locale de conservation de l’éner-

gie acoustique
La démonstration de cette équation est hors-programme
mais il faut connaître l’expression de la densité volumique
d’énergie e acoustique.
2.3 Cas d’une OPPM
Savoir retrouver les expressions de

〈−→
Π

〉
et de 〈e〉 dans

le cas d’une OPPM. Le lien entre ces deux expressions
sera détaillé ultérieurement dans le cours sur les ondes
électromagnétiques.
2.4 Intensité d’une onde acoustique, niveau

sonore
+ Connaître la définition de l’intensité d’une onde acous-
tique ainsi que du niveau sonore.
+ Établir le lien entre l’intensité d’une OPPM et son am-
plitude (en vitesse ou surpression)
2.5 Retour sur l’approximation acoustique
+ À partir des valeurs extrêmales du niveau sonore, sa-
voir vérifier numériquement après-coup que l’approxima-
tion acoustique est vérifiée.
2.6 Application à l’onde sphérique
+ Savoir retrouver l’intensité de l’onde dans le cas d’une
onde sphérique dans les deux zones. Puissance totale tra-
versant une sphère de rayon r. Application à la sphère
oscillante.
3 Réflexion et transmission d’une onde

acoustique à un changement de mi-
lieu

3.1 Cas d’un milieu unidimensionnel à section
constante

+ Savoir retrouver les coefficients de réflexion et de trans-
mission en amplitude au passage entre deux milieux d’im-
pédances Z1 et Z2 respectivement.
+ Savoir retrouver les coefficients de réflexion et de trans-
mission en puissance au passage entre deux milieux d’im-
pédances Z1 et Z2 respectivement.



Lycée Chaptal PC* 2025-2026 4

3.2 Cas d’une paroi massique entre deux fluides
+ L’exercice suivant peut être considéré comme exercice
de cours.

Exercice :

On considère une paroi séparant un milieu intérieur
(air) d’un milieu extérieur (air également) située ini-
tialement dans le plan x = 0. Une onde acoustique se
propage dans le sens des x croissants depuis le mi-
lieu intérieur vers le milieu extérieur.
On modélise la paroi par une tranche infiniment fine
de section S.

1. Donner la relation entre S, la masse volumique
ρ de la tranche et sa masse surfacique σ.

2. Quelle doit être la relation entre l’épaisseur
L de la paroi et la longueur d’onde λ pour
pouvoir considérer que tout "vibre en bloc".
Quelle relation vérifient donc les vitesses de
part et d’autre de la paroi ?

3. Trouver l’expression du coefficient de trans-
mission en amplitude associé à la surpression,
puis l’expression du coefficient de transmis-
sion énergétique T après avoir rappelé sa dé-
finition.

4. Tracer TdB = 10log10(T). De quel type de filtre
s’agit-il ?

4 Ondes sonores planes stationnaires
- Application aux instruments de mu-
sique

4.1 Onde stationnaire dans un tuyau
4.2 Modes propres d’une cavité
Cas ouvert-ouvert, fermé-fermé et ouvert-fermé.


