PC* Chaptal

NOTE DE SYNTHESE

Annotations de types en Python

I INTRODUCTION : POURQUOI ANNOTER LES TYPES 7

Python est un langage dynamiquement typé : le type d’une variable n’est pas fixé a I’avance, mais
déterminé a ’exécution. Cela rend le langage trés souple, mais peut nuire a la lisibilité et a la
rigueur dans des programmes a visée algorithmique ou mathématique.

Les annotations de types (ou type hints) permettent d’indiquer, sans modifier le comportement
du programme, le type attendu :

— des parametres d’une fonction ;
— de la valeur qu’elle renvoie;

— plus généralement, de la structure des données manipulées.

Objectif recherché :

— rendre le code plus lisible et plus proche des notations mathématiques ;
— expliciter les hypothéses sur les données (nature, dimension, structure) ;
— faciliter le raisonnement algorithmique et la relecture du code;

— préparer a des outils de vérification statique utilisés dans 1’enseignement supérieur.

Point fondamental : les annotations de types ne sont pas des contraintes d’exécution. Python
n’effectue aucune vérification automatique des types a I'exécution.

II PRINCIPE GENERAL ET SYNTAXE

Une annotation de type s’écrit directement dans la déclaration d’une fonction.

Principe :
— le type d’un parametre est indiqué apres son nom, séparé par : ;
— le type de retour est indiqué apres ->;
— le corps de la fonction n’est pas modifié.

On peut lire une fonction annotée comme :

« Cette fonction attend des objets de tels types et renvoie un objet de tel type. »

S1/4 -

PC* Chaptal

Ainsi on écrira :

def ma_fonction(varl:typel,var2:type2) -> type de sortie:

Ainsi par exemple, pour 'algorithme de recherche dichotomique dans un tableau trié, nous écri-
rions :

def bin_search(L:1list,x:int) -> bool:
g =20
d = len(L)-1
while g <= d:
m=(g+d)//2 # milieu ou partie entiére du milieu
if L[m] == x:
return True
elif L[m]<x:
g=m+1
else:
d=m-1
return False

A noter, que, si la fonction bin_search est par exemple définie de la sorte, alors :
bin_search.__annotations__ permet d’afficher la signature de la fonction bin_search.

On retiendra que cette annotation n’est pas évaluée par Python lors d’une exécution de la fonction,
mais est considérée comme un commentaire. Notamment, lors d’un appel de la fonction aucun
test ne sera effectué pour vérifié 'appartenance des types des arguments aux types spécifiés —
il s’agit vraiment juste d’une « annotation ».

III LES TYPES A CONNAITRE

1. Types numériques, booléens, chaines de caractéres

Types primitifs a connaitre :
int, float, bool, str.

Exemples :

def carre(x: float) -> float:
return x * X

def est_pair(m: int) -> bool:
return n % 2 == 0

S2/4 -

N

N

N

PC* Chaptal

2. Listes et tuples

Une liste de réels s’annotera : list [float].
Exemple :
def moyenne(L: list[float]) -> float:
return sum(L) / len(L)
Un tuple permet de regrouper un nombre fixé d’éléments, éventuellement de types différents.
Exemple :

def point() -> tuplel[float, strl:
return (1.0, ‘‘bonjour’’)

3. Dictionnaires
Un dictionnaire associe des clés a des valeurs. On peut 'interpréter comme une application finie :

clé — valeur.

Le type général est :
dict [TypeCle, TypeValeur].

Exemple de I’histogramme :

def effectifs(L: list[int]) -> dict[int, int]:
d = {}
for x in L:
if x in d:
d[lx] += 1
else:
d[x] = 1
return d

4. Tableaux NumPy

NumPy ne fournit pas encore de typage mathématique fin. On utilise le type générique np.ndarray.
Exemple :

import numpy as np

s def is_connexe(G: np.ndarray) -> bool:

-8/4 -

N

¥

PC* Chaptal

5. Fonctions comme objets

Les fonctions peuvent étre passées en argument. On utilise alors le type Callable.
Exemple :
from typing import Callable

def f(x : float) -> float
return x**2

def appliquer(f: Callable[[float], floatl], x: float) -> float:
return f(x)

6. Types optionnels

Lorsqu’une fonction peut ne rien renvoyer (None) :
Exemple :

from typing import Optional
def inverse(x: float) -> Optional[float]:
if x == 0:
return None
return 1 / x

Ce sera en particulier le cas pour une fonction qui sert a afficher un graphe ou a afficher a 'aide
de print.

« Reasonable-looking algorithms can easily be incorrect. Al- gorithm
correctness is a property that must be carefully demonstrated. »

STEVEN SKIENA dans The Algorithm Design
Manual, Springer (2008).

-4/4 -

	I Introduction : pourquoi annoter les types ?
	1. Les types à connaître
	2. Types numériques, booléens, chaînes de caractères
	3. Listes et tuples
	4. Dictionnaires
	5. Tableaux NumPy
	6. Fonctions comme objets
	7. Types optionnels

