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« My point of view is this : I see complexity as the intricate and exquisite interplay between computations
(complexity classes) and applications (that is, problems) »

Christos H. Papadimitriou
Computational Complexity, un des livres fondateurs en théorie de la

complexité algorithmique,
University of California San Diego (1994)

L’objectif de ce cours est de poser clairement le concept de complexité en temps d’un algorithme et d’apprendre,
sur des exemples simples, à la calculer. Notamment, seront introduits :

— les notations de Landau, dont O, telles qu’elles seront introduites en cours de maths dans les semaines à venir ;
— la notion de taille des variables d’entrée ;
— les notions de complexité du pire cas et du meilleur cas et, rapidement, la notion de complexité moyenne ;
— la façon de calculer une complexité soit de manière théorique, soit de manière empirique (par comptage ou par

mesure temporelle.

1 Concept de complexité algorithmique

1.1 Position du problème
En algorithmique, comme en programmation, lorsque l’on réalise un algorithme ou que l’on programme un algorithme

dans un langage donné sur une plateforme spécifique, plusieurs questions fondamentales se posent :

1. tout d’abord la question de la validité de l’algorithme. Il s’agit de :
— la preuve de terminaison (l’exécution s’achève et l’algorithme se termine en un nombre fini d’étape) ;
— la preuve de correction (l’algorithme réalise bien ce pourquoi il est conçu).

2. ensuite, se pose la question de l’empreinte en mémoire : il s’agit de déterminer comment évolue la consommation
de mémoire entre le début et la fin de l’exécution du programme. Il s’agit d’une question fondamentale si l’on souhaite
éviter un dépassement de la mémoire (ou memory overflow). Cette question est particulièrement importante dans
les calculs réalisés sur des systèmes embarqués (montre, téléphone, balise,...).

3. un autre point tout aussi important est le coût en temps de calcul : il s’agit dans ce cas de déterminer le temps
nécessaire à l’exécution d’un programme. Cette question est particulièrement importante dans des systèmes en
temps réels (télécommunications, réalité virtuelle, streaming) ou pour des calculs extrêmes (sécurité informatique,
modélisation de systèmes complexes comme les modèles de prévision du climat).
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4. on pourrait ajouter à cette liste plusieurs autres questions, comme par exemple :
— la consommation énergétique d’un programme sur une plateforme donnée (cela peut être crucial pour

calculer l’empreinte carbone d’un système informatique) ;
— le rayonnement électromagnétique d’un programme (cela est par exemple utilisé pour tester la sécurité de

cartes bancaires — cryptanalyse différentielle) ;
— la complexité de conception : il s’agit du temps humain mis par l’algorithmicien ou le programmeur pour

concevoir l’algorithme et choisir les structures de données de la façon la plus pertinente afin de mettre en œuvre
le programme (la mesure de ce paramètre se traduit parfois en millions d’euros).

Dans ce cours, nous allons nous intéresser exclusivement à la mesure du coût en temps de calcul.
On parlera à ce sujet de complexité en temps d’un algorithme. Au fur et à mesure de l’an-
née nous rencontrerons aussi des exemples dans lesquels se poseront les questions d’empreinte
mémoire. On parlera dans ces cas-là de complexité en espace et nous verrons ultérieurement
comment la mesurer.

1.2 Notion de complexité en temps

Concept : étudier la complexité en temps ( ou complexité temporelle, ou complexité) d’un
algorithme consiste à évaluer le temps d’éxécution d’un algorithme en fonction de la taille
des données en entrée.

❶ Commençons par étudier précisément un exemple
Dans les années 90, suite à l’invention du système de chiffrement RSA (du nom des trois mathématiciens Ronald Rivest,
Adi Shamir et Leonard Adleman), l’entreprise RSA a lancé un concours international de factorisation de nombres qui sont
les produits de 2 grands nombres premiers distincts — l’objectif étant de garantir la sécurité du système RSA utilisé par
la plupart de nos cartes de crédit, sécurité qui repose sur la difficulté à pourvoir factoriser des nombres entiers en produits
de nombres premiers.
Voici le résultat actuel du challenge RSA :

Pour fixer les idées, le nombre RSA-120 vaut :

RSA− 120 = 227010481295437363334259960947493668895875336466084780038173258247009162675779735389791151574049166747880487470296548479

et il se factorise en :

RSA− 120 = 327414555693498015751146303749141488063642403240171463406883×693342667110830181197325401899700641361965863127336680673013
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L’obtention de la factorisation de RSA − 120 a été obtenue en 830 millions d’instructions par seconde envoyées à un
microprocesseur durant l’équivalent d’un an (MIPS-Year). Pour donner un ordre d’idée 1 MIPS-Year est l’équivalent en
nombre d’opérations, du nombre d’opérations effectuées par un ordinateur de cadence 0.365 GHz durant un jour. Vu qu’un
simple téléphone portable actuel contient un microprocesseur cadencé à 3GHz, il réalise donc de l’ordre de 9 MIPS-Year
opérations en une journée.
Ce simple exemple montre à quel point la mesure du temps de calcul d’un algorithme, aussi difficile soit-il, dépend donc
très fortement de la plateforme utilisée, de ses caractéristiques et notamment de la puissance de son micro-processeur.

Regardons cela sur un exemple. Il est possible de mesurer très concrètement en ms la durée d’exécution d’un algorithme en
python. Il s’agit d’une première mesure naïve de la complexité. On utilise pour cela le package time qui permet d’afficher
l’horloge système (en s). Mesurons par exemple le temps mis par une recherche naïve de facteur premier sur un entier n
de la forme du challenge RSA précédent, soit n = pq avec p < q deux nombres premiers :

1 def facto(n):
2 N=int(n**(1/2)) # les facteurs sont plus petit que la racine carrée de n
3 p=2 # premier nombre premier
4 while not(n\%p==0): # continuer tant que p ne divise pas n
5 p+=1
6 return p
7

8 n=<ma valeur>
9 t0=time.time()

10 facto(n)
11 print(time.time()-t0) # affiche le temps d’éxécution de facto(n)

Listing 1 – Mesure de temps de calcul de factorisation d’un entier RSA

Sur un ordinateur portable de 5 ans d’âge muni d’un microprocesseur de cadence 3GHz, j’obtiens les temps suivants :

Entrées Temps
n = p× q où p et q sont de taille 105 ≈ 15ms

n = p× q où p et q sont de taille 106 ≈ 200ms

n = p× q où p et q sont de taille 107 ≈ 1, 835s
n = p× q où p et q sont de taille 108 ≈ 18.908s

Remarque :
1. On pourra utiliser nextprime(N) du package sympy pour générer le plus petit nombre premier supérieur à N.

2. On observe que, si l’on réalise à nouveau une mesure de temps sur exactement la même entrée (deux premiers de
taille 108), la valeur temporelle peut changer fortement (passer de moins de 20s à 30s). En effet, si l’ordinateur
exécute une tâche à ce moment-là, la valeur peut être entièrement changée.

Conclusion : on observe donc que le calcul du temps réel d’exécution d’un algorithme donne,
certes, une indication de la complexité d’un algorithme mais, est :

— fortement dépendant de la machine utilisée (plateforme, OS, quantité de mémoire, lan-
gage de programmation, microprocesseur, etc) ;

— n’est pas reproductible entre différentes machines ni même sur la même machine à
différents moments.

❷ Comment mesurer une information significative de la complexité d’un algorithme en s’affranchissant
des données spécifiques à la machine ?
On a vu au paragraphe précédent que le simple calcul du temps d’exécution n’est pas une indication suffisamment précise
et pratique pour mesurer la complexité d’un algorithme.
Une autre piste consiste à compter toutes les opérations réalisées par l’algorithme étudié. Prenons pour ce faire un exemple
que nous avons déjà étudié : le calcul du maximum d’une liste.
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1 def mymax(L):
2 res=L[0]
3 n=len(L)
4 for i in range(1,n):
5 if L[i]>res:
6 res=L[i]
7 return(res)

Listing 2 – Maximum d’une liste

Pour chaque ligne de code i, notons ci le coût d’éxécution en temps des opérations de la ligne :
— c1 est le coût de l’entrée dans la procédure ;
— c2 et c3 sont des coûts d’affectations de variable, on peut supposer qu’ils sont égaux (c2 = c3) ;
— c4 est le coût de la construction d’un processus itératif ;
— c5 est le coût d’un test ;
— c6 = c2 = c3 ;
— c7 est le coût de la sortie de la procédure.

Selon que l’on considère que certaines opérations sont élémentaires ou non, on influe sur la granularité et l’estimation
du coût. Ici, on peut supposer que les coûts c1 à c7 sont tous fixes indépendamment de l’entrée L. Nous pouvons alors
effectuer notre calcul du coût d’exécution :

c1 + 2c2 + c4 + n(c5 + c2) + c7.

Autrement dit, ce coût est de la forme An+B avec A et B deux constantes qui dépendent du système utilisé.
On observe donc que ce coût ne dépend que de n et de variables dépendantes du système. Nous noterons donc ce coût
C(n) où n est la taille de notre liste :

C(n) = An+B.

Vu que nous ne connaissons pas les paramètres A et B et que nous ne cherchons pas à les connaître, et vu que l’information
qui nous intéresse et d’ordre asymptotique (quand n → +∞), nous retiendrons donc que ce coût est affine en n.

Le fait que le coût total de notre algorithme soit affine en n est l’information qui nous intéresse :
— elle est de nature asymptotique quand n → +∞ ;
— elle est indépendante de la nature du système utilisé.

Nous souhaitons donc retenir cette information comme indicateur de la mesure de la complexité
de notre algorithme.

Il nous reste à préciser l’écriture de cette complexité. Pour ce faire, nous avons besoin du formalisme des notations de
Landau, ce qui est l’objet du paragraphe suivant.

1.3 Précisions sur les ordres de grandeur
Les notations de Landau sont au programme du cours de mathématiques de PCSI. On va introduire ici uniquement

les définitions de O et Θ :
Considérons (un) et (vn) deux suites réelles.

— Nous dirons que un = O(vn) s’il il existe M > 0 et un rang N à partir duquel :

|un| 6 M |vn|.

Autrement dit : un = O(vn) si et seulement si (un) est bornée par (vn) à multiple près pour n assez grand.
— Nous dirons que un = Θ(vn) s’il existe M1 > 0 et M2 > 0 et un rang N à partir duquel :

M1vn 6 un 6 M2vn.

Autrement dit : un = Θ(vn) si et seulement si (un) est du même ordre que (vn) pour n assez grand.
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On se sert de ces symboles pour construire des comparaisons asymptotiques des suites. Ainsi par exemple :

(ln(n))k = O(nl) et nl = O(an) et an = O(n!) et n! = O(nn)

pour tout (k, l) ∈ N
2, pour tout a > 1. Et de même :

4 ln(n)2 + 5 ln(n)3 = Θ(ln(n)3) et 4n2 + n+ 1 = Θ(n2).

Tout cela sera amplement revu en cours de mathématiques avec bien plus de détail qu’ici et avec toutes les démonstrations.
Remarque : on peut facilement voir que si un = Θ(vn) alors un = O(vn) mais la réciproque est fausse.

1.4 Méthodes d’écriture et de calcul de la complexité
A l’aide des notations de Landau introduites au paragraphe précédent nous allons pouvoir préciser la définition de la

complexité d’un algorithme.

Considérons un algorithme dont les entrées ont une taille donnée par un paramètre entier. On
notera Dn les entrée de taille n pour n ∈ N.

— Si le coût d’exécution de l’algorithme pour une entrée d ∈ Dn ne dépend que de n alors
on appellera complexité de notre algorithme ce coût, noté C(n).

— Si le coût d’exécution de l’algorithme pour une entrée d ∈ Dn est variable alors on appellera
complexité du pire cas de notre algorithme le maximum de ces coûts pour une entrée
d parcourant Dn, noté Cmax(n).

— Si le coût d’exécution de l’algorithme pour une entrée d ∈ Dn est variable alors on appellera
complexité du meilleur cas de notre algorithme le minimum de ces coûts pour une
entrée d parcourant Dn, noté Cmin(n).

— Si le coût d’exécution de l’algorithme pour une entrée d ∈ Dn est variable alors on appellera
complexité moyenne la moyenne de ces coûts pour une entrée d parcourant Dn, noté
Cmoy(n).

Ces complexités seront exprimées à l’aide des notations de Landau O(n) ou Θ(n). Ainsi dans
l’exemple étudié précédemment la complexité vaut C(n) = O(n) ou de même C(n) = Θ(n).

Considérons plusieurs exemple :

1. Si la complexité est O(n) on dira que la complexité est linéaire en n. La complexité linéaire est celle nécessaire au
fait de « lire » l’entrée. Par exemple

1 def lecture(L):
2 n=len(L)
3 res=[]
4 for i in range(n):
5 res=res.append(L[i])
6 return(res)
7

Listing 3 – Complexité linéaire

est de complexité linéaire.

2. Si la complexité est O(1) on dira que la complexité est constante. Par exemple

1 def constant(L):
2 return(L[0])
3

Listing 4 – Complexité constante
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est de complexité constante. Un algorithme de complexité constante est donc plus rapide que le simple fait de
« lire » la variable d’entrée. En général, il s’agit d’un algorithme « d’oubli » (i.e. où l’on abandonne l’information
sur une partie de l’entrée — ici on abandonne l’information sur toutes les entrées de L sauf la première, on ne prend
donc même pas le temps de « lire » la liste L).

3. Si la complexité est O(n2) on dira que la complexité est quadratique en n, si elle est O(nk) pour k ∈ N et k > 3
alors on dira qu’elle est polynomiale en n et si elle est O(an) pour a > 1 alors on dira qu’elle est exponentielle
en n.

Remarque : attention, quand nous étudierons les représentations des entiers, nous verrons que la taille utiliser pour
représenter un entier est son logarithme, soit ln(n). Ainsi un algorithme de complexité O(n) sera un algorithme exponentiel
(en la taille ln(n)) car n = eln(n). Il est donc capital d’identifier avec précision la taille des variables avant de se lancer
dans un calcul de complexité. Nous reviendrons sur ce point plus tard.

~
2 Exemples de calculs de complexité

2.1 Calculs de sommes
Considérons un exemple de calcul de somme comme par exemple :

n∑

i=1

i.

Nous avons déjà vu qu’une telle somme peut se calculer par le code suivant :

1 def somme1(n):
2 res=0
3 for i in range(n):
4 res=res+i
5 return(res)
6

Listing 5 – Somme d’entiers 1

Ici on va considérer comme taille de la variable d’entrée, elle-même à savoir n, et dans ce cas la complexité est linéaire
O(n).

Mais on notera que si on avait décidé de calculer cette somme via la formule

n(n+ 1)

2

alors le code aurait été :

1 def somme2(n):
2 return(n*(n+1)/2)
3

Listing 6 – Somme d’entiers 2

Dans ce cas, la complexité aurait été constante O(1).

2.2 Avec des listes
Considérons l’algorithme de la recherche de deux valeurs les plus proches dans un tableau que nous avons déjà travaillé

en TD :

1 def rechercheproche( L ):
2 N =len( L )
3 i , j = 0 , 1
4 for p in range (N -1):
5 for q in range ( p +1 , N ):
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6 if abs ( L [ p ] - L [ q ]) < abs ( L [ i ] - L [ j ]):
7 i , j = p , q
8 return [i , j ]

Listing 7 – Valeurs les plus proches

Ici on va considérer comme taille de la variable d’entrée, la longueur N de la liste. La complexité est donc donnée par le
nombre et la longueur des boucles effectuées, que nous noterons C(N). La quantité C(N) s’obtient en ajoutant 1 à chaque
itération de la fonction — ce qui explique qu’elle ne dépende que de N. Autrement dit C(N) s’écrit :

C(N) =

N−2∑

i=0

N−1∑

j=i+1

1.

On notera que, quel que soit deux entiers k ≤ l, on a
∑l

j=k 1 = l − k + 1, de plus on connait la formule, démontrée en
cours de maths :

n∑

k=1

k =
n(n+ 1)

2
∀n ∈ N.

Ainsi :

C(N) =
N−2∑

i=0

N − 1− i

= (N − 1)2 −

N−2∑

i=1

i

= (N − 1)2 −
(N − 2)(N − 1)

2

Il s’agit bien d’un polynôme de degré 2 en N. En conclusion :

C(N) = O(N2.)

2.3 Avec des chaines de caractères
Considérons l’exemple que nous avons déjà traité en TD de la recherche d’un motif dans une chaine de caractère.

1 def recherchemotif(text,motif):
2 T=len(text) # longueur de text
3 M=len(motif) # longueur de motif
4 res=[] # conteneur des résultats
5 p=0 # compteur du balayge sur text
6 while p+M<=T: # le compteur p + la longueur de motif ne doit pas excéder la

longueur de text
7 i=0
8 while (i<M and motif[i] == text[p+i]): # balayage des M caractères de motif

après la position p
9 i+=1

10 if i==M: # les M caractères en partant de p coincident entre text et motif
11 res.append(p) # on stocke le compteur
12 p+=1
13 return res

Listing 8 – Recherche de motif

Ici on va considérer comme taille de la variable d’entrée, la longueur N de la chaine de caractère text (celle de motif
étant inférieure). La complexité est donc donnée par le nombre et la longueur des boucles effectuées. Il y a exactement
deux boucles mais la deuxième n’est pas de longueur constante. Le coût d’exécution n’est donc pas constant pour un text

~
quelconque de longueur N. Nous allons donc évaluer la complexité du pire cas. Celui-ci consiste en ce que les deux boucles
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soient de longueur maximale. Cela a lieu pour un text de longueur 2N et un motif de longueur N et les deux chaines de
caractère ne possédant que la même lettre. Dans ce cas :

Cmax(2N) =
N−1∑

p=0

N−1∑

i=0

1 = N2.

Donc le pire cas est de complexité quadratique.
On notera que le meilleur cas est de complexité linéaire.

3 Calcul de complexité explicite en python sur des exemples

Enfin, on notera qu’il existe une méthode très pratique pour calculer la complexité sur des exemples directement en
~

python. Il s’agit de fixer un compteur qui est une variable globale et qui s’incrémente en temps voulu, par exemple à
chaque passage de boucle ou à chaque test réalisé.

Pour appliquer cette méthode à l’algorithme précédent, on procèdera comme suit :

1 def recherchemotifC(text ,motif):
2 global C
3 T=len(text)
4 M=len(motif)
5 res=[]
6 p=0
7 while p+M<=T:
8 i=0
9 C+=1

10 while (i<M and motif[i] == text[p+i]):
11 C+=1
12 i+=1
13 if i==M:
14 res.append(p)
15 p+=1
16 return res
17

18 C=0
19 recherchemotifC(’Bonjour’,’o’)
20 print(C)

Listing 9 – Recherche de motif

On obtient C = 9. Ainsi dans ce cas, le coût d’éxécution significatif vaut 9. Cette méthode ne fournit évidemment pas le
caractère asymptotique et ne fournit pas la complexité mais donne une information plus précise que le simple calcul du
temps d’exécution de l’algorithme.
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