CHAPTAL PCSI A — 2021/2022

COURS 2 — ALGORITHMES DICHOTOMIQUES

Etude de cas

« DicHOTOMIE : provient du grec duxorouta dikhotomia « division en deuz parties », mot composé des mots
duxa dikha « en deuz » et Touol tomos « section, coupure » »

L’objectif de ce cours est d’introduire une approche algorithmique importante : celles des algorithmes dichotomiques.
Démarche :

1. Nous allons commencer par introduire l'idée générale (section I);

2. Puis nous allons expliquer et analyser en détail un paradigme important d’algorithme dichotomique (section II);

3. Enfin nous allons donner deux autres exemples d’approches dichotomiques dans deux contexte différents (section

IIT).
PLAN DU COURS
1 Introduction 1
2 Paradigme de la recherche dans un tableau trié 2
3 Deux autres exemples d’approche dichotomique dans deux contextes différents 4
3.1 L’exponentiation rapide e e e 4
3.2 Reésolution d’une équation f(z) =0 L 5

Prérequis :
1. Le cours sur la complexité.
2. Les TP sur les structures itératives.

Post-requis : nous retrouverons des approches dichotomiques & de nombreux moments en CPGE dont trés bientot :
— quand nous étudierons la forme récursive de certains algorithmes itératifs ;
— dans I’étude des algorithmes de tri.

1 Introduction

Une approche fondamentale en algorithmique quand on cherche a concevoir un algorithme est ce que lon appelle
« diviser pour régner » (divide and conguer). Elle procéde en général en 3 étapes :

1. ’étape de division : ou 'on découpe le probléme en sous-problémes de plus petite taille.

2. I’étape de régne : ou l'on résout chacun des sous-problémes indépendamment de maniére directe ot par des
algorithmes itératifs ou récursifs. Cette étape s’adapte particuliérement bien au besoin de parallélisation, c’est-
a-dire au fait de faire travailler une grappe d’ordinateurs ou de CPU en paralléle plutot que de traiter le probléme
sur un seul et méme ordinateur ou CPU.

3. I'étape de combinaison : ou l'on calcule la solution finale du probléme en combinant les « petites » solutions des
« petits » sous-problémes.

L’étape de division peut consister & subdiviser un probléme donné en un nombre trés grand de sous-problémes. Mais on
peut aussi ne diviser le probléme qu’en deux. Dans un tel cas nous parlerons d’une approche dichotomique.

En mathématique, et notamment en algébre linéaire, I'idée de résoudre un probléme (comme une équation linéaire), en
prenant des coordonnées dans une base, en résolvant des sous-problémes pour chaque coordonnées et en recombinant
les solutions obtenues pour chaque coordonnées en un vecteur de l'espace, constitue un exemple d’approche « diviser
pour régner ». En Spé, vous étudierez notamment la diagonalisation et apprendrez & réduire un probléme & 1’étude de
sous-problémes sur chaque composantes propres, cela constitue aussi un autre exemple de stratégie « diviser pour régner ».

- 1/5 -

2 Paradigme de la recherche dans un tableau trié

Un des problémes les plus caractéristique pour la mise en place d’une approche dichotomique est celui dit de la
recherche d’un élément dans une liste triée.

Probléme : étant donné une liste L d’éléments classés par ordre croissant et un autre élément x quelconque, on veut
savoir si x est I'un des éléments de la liste L.

Approche naive : ’algorithme de recherche séquentielle (linear search ou sequential search). Nous avons déja vu
cet algorithme. Un exemple de code s’écrit :

def SeqSearch(L,x):
L : liste quelconque

s # © : object quelconque

1

sortie : True si1 © est dans L et False sinon

res=False
i=0
while i<len(L) and not res:

if L[i] == x:

res=True

i+=1

return res

Listing 1 — Algorithme de recherche séquentiel

Nous considérerons que la taille des données d’entrée est donnée par la longueur n de la liste L. Nous mesurerons donc la
complexité de cet algorithme en fonction de n. Dans le pire cas, (celui ou « n’appartient pas & L ou celui ot 'occurrence
de z dans L n’a lieu qu’en L{n — 1]) il y a n itérations de la boucle while et donc n tests d’égalité. La complexité du pire
cas de cet algorithme est donc O(n) et cet algorithme est donc de complexité linéaire. Nous allons voir qu’il s’agit d’un
algorithme trés lent pour un probléme de recherche. En revanche, on remarque que cet algorithme ne nécessite pas, pour
fonctionner, que la liste L soit triée par ordre croissant.

Approche dichotomique : 'intérét est ici d’accélérer grandement 'algorithme de recherche, en revanche, il sera néces-
saire que la liste L soit triée. L’idée de 1’algorithme de recherche dichotomique (binary search) est de découper le
tableau en deux (ou ce qui s’en rapproche le plus) et de comparer x uniquement au milieu du tableau afin de savoir de
quel coté se situe potentiellement = puis de recommancer. Ainsi par exemple : si

L=1[1,2,3,4,56,7,8,9,10] e z=7

alors :

— étape (1) : test 5 < 7, on ne regarde que le tableau de droite [6,7,8,9, 10]

— étape (2) : test 7 < 8, on ne regarde que le tableau de gauche [6, 7]

— étape (3) : test 6 <,7 on ne regarde que le tableau de droite [7]

— étape (4) : test 7 =7, c’est terminé.
1l s’agit d’un algorithme, en fait trés intuitif, que notre cerveau a appris & pratiquer instinctivement : c’est celui que nous
utilisons pour « tatonner » a la recherche d’un objet sur une table ou pour jouer au jeu du « chaud/froid », etc... Un
exemple de code s’écrit :

def BinSearch(L,x):
L : liste triée par ordre croissant

s # © : object quelconque

1

sortie : True st = est dans L et False sinon

3g=0
s d = len(L) -1

wvhile g <= 4d:
n=(g+d)//2 # milieu ou partie entiére du milieu
if Llm] == x:
return True
elif L[m]<x:
g=m+1
else:

-2/ -

14

15

d=m-1

return False

Listing 2 — Algorithme de recherche dichotomique

Etude de I’algorithme de recherche dichotomique :

1. Terminaison de 1’algorithme : afin de prouver que ’algorithme termine bien, il nous faut identifier un variant de

boucle et montrer que ce variant est un entier qui décroit strictement & chaque itération de la boucle while jusqu’a
ce qu’il devienne négatif et que le test d’arrét termine la boucle. Considérons le variant d — g et posons vy la valeur
de ce variant a la k-iéme itération. Alors :
N Vo U1
vo =n — 1 (ot n est la longueur de L), v; <) < v, V2 <) <vy,...

Donc la suite vg décroit strictement. En conséquence 'algorithme termine : ou bien la boucle termine sur un return
ou bien vy devient négatif et la condition d’arrét sera satisfaite.

. Correction de 1’algorithme : afin de prouver que ’algorithme fournit un résultat correct, nous devons identifier

une propriété (ou prédicat) qui sera toujours vrai & chaque itération. Séparons les cas :
— si x n’appartient pas & L, alors la propriété
d+
Pk)="g<d et L[m]# xpourm= E(?g)”
est toujours vrai a l'itération k.
— si x appartient & L, alors la propriété

Pk)="g<d et Llgl<az<L[d

est toujours vrai & l'itération k. On peut montrer cela par récurrence :

— pour k =1 c’est vrai car nous avons supposé que x est dans L.

— supposons que P(k) est vrai & la k-iéme itération. Posons pour simplifier gi la valeur de g et dj la valeur
de d lors de cette k-iéme itération. Posons m la valeur du milieu (soit E(d’“%)). Si Lim| =z, alors il n’y a
pas d’itération suivante. Traitons par exemple le cas L[m] < x, alors z se situe dans la demi-liste de droite.
Dans ce cas,

g1 =m+1 et diy =dy.

Ainsi L[gk+1] < = car sinon Lim] < & < L[m + 1] et donc x ne serait pas dans la liste ce qui est exclu ici.
De plus on a bien z < L[dg1] par hypothése de récurrence. Enfin si di41 < gr+1, alors cela signifie que
m < di < m+1 et donc m = dj, ce qui impose que m = g, mais encore que L[gi] = © = L[d] par hypothése
de récurrence. Ce cas est exclu car nous avons supposé L[m] < z. Il reste le cas x < L[m] qui se démontre
de maniére similaire.
Dans chacun des deux cas, nous venons de prouver qu’un prédicat reste vrai lors de chaque itération, ce qui prouve
la correction de 1’algorithme.

. Complexité de 1’algorithme : Reprenons les vy, (valeur du variant d — g lors de la k-iéme itération) que nous

avons introduit. On obtient par récurrence immédiate que :

Vo

ngz—k.

Posons k = E(logy(vp)) + 1 alors
2F1 Ly < 2P

Ainsi g¢ < 1 et donc viy1 < 0 et lalgorithme s’arréte (s’il ne s’est pas arrété avant). L’algorithme termine donc

au plus en k étapes. Il reste & observer que k = E(lnl(:(;)l)) + 1 et donc

In(n)
In(2)

ou encore k = O(In(n)). Ceci prouve que la complexité de I'algorithme de recherche dichotomique est en O(In(n)).
Notons qu’il s’agit d’une complexité remarquablement (exponentiellement plus) rapide en comparaison & celle de la
recherche séquentielle ou de la simple lecture du tableau. Il est donc infiniment plus rapide de chercher un élément
que de lire l'intégralité du tableau.

k < +1

-3/5 -

3 Deux autres exemples d’approche dichotomique dans deux contextes dif-
férents

3.1 L’exponentiation rapide
Probléme : étant donné un entier g et un entier n, on veut calculer g”.
Approche naive : elle consiste & réaliser le produit g - g n — 1 fois. Un exemple de code s’écrit :

def LinearExp(g,n):

g : entier

n : entier positif supérieur a I
sortie : g¥#¥n

res=1

for i in range(n):
res=res*g
return res

Listing 3 — Exponentiation naive

Cet algorithme réalise n multiplications. On va voir que I'on peut faire bien plus efficace que cela.

Approche dichotomique : P’algorithme d’exponentiation rapide. L’idée est ici de réaliser les multiplications par
carrés itérés d’ou autre nom de Dalgorithme « algorithme des carrés itérés » (repeated squaring ou binary squaring).
Expliquons cela sur un exemple simple : mettons que nous souhaitions calculer ¢g'!. Alors :

gl =

1o

(9°)?

(9-9")°

(9 (0*?)°

Nous avons donc eu besoin de réaliser deux multiplication par g et 3 mise au carré, soit 5 multiplications en tout au lieu

de 11. Nous pouvons rédiger cet algorithme de bien des facons. Si 'on souhaite le rédiger sous la forme d’un processus
itératif conditionnel, on obtient un code du type :

)
)
)
)

def BinaryExp(g,n):

g : entier
n : entier supérieur a I
sortie : g*#¥n
res=1
k=n
while k!=0:
if k%2==1:

res=resx*g
res=res*xres
k=k//2
return res

Listing 4 — Exponentiation rapide

De méme que dans le cas de la recherche dichotomique sur une liste, le variant de boucle k s’annule a la k+ 1-iéme itération
si
2kt <n < 2¥

soit si k = E(logy(n)) + 1. Ainsi, dans le pire cas, 'algorithme réalise 2(F(logy(n)) + 1) multiplications. Cette quantité est
un O(In(n)). On observe donc que algorithme naif réalise exponentiellement plus de multiplications que I'exponentiation
rapide!

Remarque : nous avons énoncé le probléme de 'exponentiation rapide sur les entiers (g est ici un entier) mais en réalité
nous pouvons énoncer ce probléme ainsi que l'algorithme d’exponentiation rapide pour une classe d’objets bien plus
vaste, par exemple : g pourrait étre une matrice d’entiers, g pourrait étre une permutation sur un ensemble fini ou plus

-4/5 -

généralement g pourrait étre n’importe quel élément dans un groupe mathématique dont on peut représenter en Python
les éléments ainsi que la loi. Mentionnons juste que cet algorithme est absolument fondamental en cryptographie (RSA,
SSH/SSL, logarithme discret).

3.2 Résolution d’une équation f(z) =0

Probléme : étant donné une fonction f : [a,b] — R continue non nulle en a et en b. On suppose que f admet un
changement de signe entre a et b, autrement dit f(a)f(b) < 0. Alors le théoréme des valeurs intermédiaires garantit le fait
qu’il existe un réel z €]a, b| tel que f(x) = 0. Si € > 0, alors nous souhaitons calculer une approximation décimale de x
(un flottant) a e prés.

Cette fois-ci, il n’y a pas d’approche naive pour résoudre ce probléme. Si 'on rajoute des hypothéses de régularités sur la
fonction f, d’autres méthodes vont exister comme la méthode de la sécante ou la méthode de Newton. Ces méthodes sont
plus rapides que l'algorithme par dichotomie que nous allons rappeler ici (ce dernier a été vu en cours de mathématiques).

Nous souhaitons procéder selon la méme idée que ’algorithme de recherche dichotomique dans un tableau. L’idée de la
méthode de dichotomie (bisection method) est de découper 'intervalle [a,b] en 2 et de comparer le signe de f(a) et f(b)
uniquement au signe de f(m) ot m est le milieu de l'intervalle afin de savoir de quel coté se situe potentiellement z puis
de recommancer. On obtient un code du type suivant :

def Bisection(f,eps,a,b):
f : une fonction python wvalide sur des flottants de [a,b]
eps : flottant strictement positif

a,b : deux flottants avec a<bd
sortie : un flottant qut approzime & eps preés tel que f(z)=0.
g,d=a,b
while d-g>eps:
m=(g+d) /2
if £(g)*f(m)<0:
d=m
else:
g=m

return (g+d)/2
Listing 5 — Méthode de dichotomie
De méme que dans le cas de la recherche dichotomique sur une liste, le variant de boucle d — g & la k-iéme itération vérifie :

b—a
2k

d—g<
Ainsi la boucle s’arréte dés que
b—a
ok

Autrement dit, si 'on souhaite une approximation 4 10~ prés, il sera nécessaire d’avoir réalisé au moins k étape avec :

<E.

10V (b —a) < 2*
soit k supérieur & N llnn((lzo)) + lnlglb(;)l). Le nombre d’itérations minimal pour obtenir une approximation & 10~V preés est donc
linéaire en NN, ce qui ne constitue pas une approximation rapide. Pour autant, on retiendra que cet algorithme fonctionne
avec des hypothéses de régularité minimales sur la fonction f.

-5/5 -

