
Chaptal PCSI A — 2021/2022

C o u r s 4 — S p é c i f i c a t i o n & Va l i d at i o n

B o n n e p r a t i q u e s d e s p é c i f i c a t i o n & P r é c i s i o n s s u r l e s q u e s t i o n s d e v a l i d a t i o n

« Testing shows the presence, not the absence of bugs. »

Attribué à E. W. Dijkstra

Ce cours est orienté en direction du contrôle-qualité (Quality process) de la production d’un algorithme :

1. Contrôle qualité en matière de spécifications d’une procédure (fonction) : signature, précision et
vérifications des pré-conditions et post-conditions, commentaires, jeu de tests.

2. Contrôle qualité en matière de validation d’une procédure : preuve de terminaison et preuve de
correction.

Le troisième volet en matière de contrôle-qualité consiste à étudier et quantifier la complexité d’une procé-
dure. Cela a été introduit dans le cours n°1.

Plan du cours

1 Spécifications d’une procédure 1
1.1 Signature . 1
1.2 Docstring . 2
1.3 Assert . 3
1.4 Commentaires . 3
1.5 Jeu de tests . 4

2 Validation d’une fonction 4
2.1 Terminaison . 4
2.2 Correction . 5
2.3 Étude d’un exemple spécifique . 6

1 Spécifications d’une procédure

Une fois une procédure (ou fonction en Python) conçue, testée et analysée, on souhaite livrer un produit
fini (livrable) possédant, en soi, toutes les informations permettant un usage valide de la procédure. Ceci
passe par des spécifications.

L’analogue de cela en mathématique consiste à spécifier l’ensemble de définition et l’espace d’arrivée
lorsque l’on définit une fonction au lien d’écrire uniquement f(x) = blabla(x).

1.1 Signature

La première spécifications importante est la signature d’une fonction :

Definition 1 — La signature d’une fonction est la donnée :

1. du nom de la fonction ;

2. du nom de ses arguments et de leur type ;

3. du type de la ou des valeur(s) renvoyées par la fonction.

- / -

Le plus simple pour préciser cette signature dans le corps de la fonction est d’utiliser l’annotation suivante :

def ma_fonction(var1:type1,var2:type2) -> type de sortie:

Ainsi par exemple, pour l’algorithme de recherche dichotomique dans un tableau trié, nous écririons :

1 def bin_search(L:list ,x:int) -> bool:
2 g = 0
3 d = len(L)-1
4 while g <= d:
5 m=(g+d)//2 # milieu ou partie entière du milieu
6 if L[m] == x:
7 return True
8 elif L[m]<x:
9 g=m+1

10 else:
11 d=m-1
12 return False

A noter, que, si la fonction bin_search est par exemple définie de la sorte, alors : bin_search.__annotations__
permet d’afficher la signature de la fonction bin_search.

On notera que cette annotation n’est pas évaluée par Python lors d’une exécution de la fonction, mais est
considérée comme un commentaire. Notamment, lors d’un appel de la fonction aucun test ne sera effectué
pour vérifié l’appartenance des types des arguments aux types spécifiés — il s’agit vraiment juste d’une
« annotation ».

Enfin, une fonction qui ne sert par exemple qu’à afficher un graphe ou à afficher à l’aide de print aura un
type de sortie qualifié de none.

1.2 Docstring

La deuxième spécification importante consiste à apporter un entête à la fonction visant à :
1. expliquer en une ou deux lignes la tâche effectuée par la fonction ;
2. expliquer les contraintes éventuelles pesant sur les arguments (les pré-conditions) ou sur valeurs

retournées par la fonction (les post-conditions).

Pour ce faire, il est préférable d’utiliser le format standardisé du Docstring. Ainsi, pour reprendre notre
exemple de la fonction bin_search, on écrira :

1 def bin_search(L:list ,x:int) -> bool:
2 ’’’
3 Recherche dichotomique d’un élément dans un tableau trié
4 Entrée : L une liste triée par ordre croissant contenant des flottants
5 x un flottant
6 Sortie : un booléen Vrai si x appartient à la liste et Faux sinon
7 ’’’
8 g = 0
9 d = len(L)-1

10 while g <= d:
11 m=(g+d)//2 # milieu ou partie entière du milieu
12 if L[m] == x:
13 return True
14 elif L[m]<x:
15 g=m+1
16 else:
17 d=m-1
18 return False

- / -

Plusieurs remarques :

1. Ainsi écrit, cet entête est un commentaire et donc n’est pas interprété par Python lors d’une exécution
de la fonction. Cependant, ce format standard est reconnu par Python comme un Docstring et
la commande help(bin_search) renverra le doctring en question. On notera à ce sujet que cette
commande help affiche les docstring de toutes les fonctions Python que nous utilisons (on tapera
pour s’en convaincre help(divmod) par exemple).

2. Ce Docstring doit être extrêmement synthétique mais comporter d’autres informations comme un
invariant de boucle ou une indication sur la complexité, etc.

3. Le Docstring est utile pour produire un livrable de qualité comportant toutes les spécifications utiles ;
pour autant ce n’est pas ce par quoi il faut commencer quand on conçoit un algorithme.

1.3 Assert

To assert en anglais signifie « affirmer, faire valoir, énoncer (comme énoncer un fait vrai) ».

Une fois la signature de la fonction posée et ses spécifications précisées dans un docstring, il peut être
pertinent de spécifier une ou des contraintes particulières à vérifier sur les arguments de la fonctions, avant
l’exécution de la fonction, permettant de stopper l’exécution de la fonction en renvoyant un message dans le
cas où les contraintes ne sont pas satisfaites.

C’est le sens de la commande assert :

assert test booléen

Cette fonction ne renvoie rien si l’évaluation du test booléen renvoie True et renvoie le message d’erreur
AssertionError si l’évaluation du test booléen renvoie False.

Prenons par exemple le cas de la division euclidienne de deux entiers. La division euclidienne de a par b

(deux entiers positifs) existe si, et seulement si, b 6= 0. Ainsi

1 def my_divmod (a:int ,b:int) -> tuple:
2 ’’’
3 Calcul itératif de la division euclidienne de deux entiers
4 Entrée : a et b deux entiers positifs avec b != 0
5 Sortie : deux entiers positifs q et r tels que a=bq+r
6 ’’’
7 assert b!=0
8 q,r=0,a
9 while r >= b:

10 r = r-b
11 q = q+1
12 return q,r

Listing 1 – Division euclidienne

Il peut être parfois important de tester sous la forme d’un assert le type d’un argument, auquel cas, on
écrira assert isinstance(argument,type). Par exemple : assert isinstance(2.,list) va renvoyer une
AssertionError alors que assert isinstance(2.,float) va valider l’évaluation de l’assertion.

Toute fonction ne nécessite pas de préciser des assert, il faut les préciser pour mettre en avant des cas
limites de la fonctions pour lesquels l’exécution ne fonctionnerait pas ou n’aurait pas de sens ou renverrait
un résultat erroné, etc. Il s’agit typiquement d’éviter des divisions par zéro, des évaluation en des indices
hors de la taille d’une liste, des arguments qui ne seraient pas du type souhaité.

1.4 Commentaires

Enfin, les commentaires en cours de programme sont essentiel pour la qualité du code fournit : ils doivent
être succincts, efficace et doivent pointer uniquement les points algorithmiquement pertinents.

- / -

1.5 Jeu de tests

Construire un jeu de tests, consiste à sélectionner un ensemble de valeurs pour les arguments de la
fonctions et à calculer la/les valeurs retournées par la fonction en ces valeurs.

Le choix des valeurs testées pour un jeu de test répond à une stratégie. Il s’agit de mettre en lumière un
fait particulier. Cela peut être :

— tester quelques cas simples pour montrer que la fonction retourne les valeurs souhaitées dans les cas
souhaités ;

— tester des valeurs produisant des erreurs ou des sorties incorrectes de la fonction.
— tester des valeurs limites ou des valeurs interdites afin d’exhiber des comportements résiduels.
— tester un nombre important de données (qui pourraient être construite de manière aléatoire par

exemple) afin de mettre en lumière un comportement de nature statistique (une moyenne par exemple).
— tester des cas qui pourraient nécessiter un temps d’exécution long afin de mettre en lumière un point

de complexité de la fonction.
— etc.

Une fois un jeu de tests construit, on l’écrira le plus souvent sous la forme d’assert :

1 assert mafonction(var1 ,var2) == monresultat1
2 assert mafonction(var3 ,var4) == monresultat2
3 ...

2 Validation d’une fonction

Maintenant que notre fonction a été spécifiée correctement, nous voulons prouver son bon fonctionne-
ment. Il s’agit de la validation d’une fonction.

A cette fin, deux points vont être spécifiquement étudiés :

1. dans les cas d’une fonction itérative de type while ou d’une fonction récursive, nous voulons prouver
la terminaison de l’itération ou de la récursion pour toute valeur autorisée des arguments (autorisée
dans les spécifications).

2. dans le cas d’une fonction itérative ou récursive, nous voulons prouver que le résultat obtenu est
correct, à savoir qu’il est bien le résultat annoncé dans les spécifications.

2.1 Terminaison

Étant donné une fonction construite à l’aide d’une itération de type while, on souhaite montrer que
l’exécution de la fonction produit un résultat en un nombre fini d’itérations quelles que soient les valeurs des
arguments fournies dans la plage de valeurs spécifiées.

Pour ce faire, nous allons utiliser un variant de boucle :

Définition 2 — Étant donné une fonction itérative de type while. Un variant de boucle est une fonction
des variables de la k-ième itération qui est strictement croissante ou strictement décroissante.

Nous montrerons que ce variant vk possède une propriété à partir d’un certain rang qui implique la
propriété de sortie de boucle.

Par exemple :
— ce variant vk est à valeur entières positives strictement décroissantes : donc devient négatif à partir

d’un certain rang.
— ce variant vk est l’écart l − uk d’une suite croissante qui tend vers l donc l − uk est inférieur à ε à

partir d’un certain rang.
— ce variant vk est l’écart βk−αk entre deux suites adjacentes αk 6 βk donc vk est inférieur à ε à partir

d’un certain rang.

- / -

Si un variant de boucle simple est clairement identifiable, il peut être pertinent de l’écrire dans le Docstring
de la fonction.

Exemples :

1. Nous avons déjà étudié un variant pour l’algorithme de recherche dichtomique d’un élément dans une
liste triée.

2. Il est intéressant d’identifier un variant pour plusieurs algorithmes que nous connaissons déjà :
— calcul de la division euclidienne de deux entiers ;
— l’algorithme d’Euclide pour le calcul du pgcd
— résolution de f(x) = 0 ; par la méthode de dichotomie ;
— recherche d’un maximum dans une liste ;
— calcul d’une somme.

3. Dorénavant, dès que nous établirons un algorithme itératif important, nous identifierons et prouverons
la terminaison à l’aide d’un variant (ce sera notamment le cas, pour l’étude des algorithmes de tri).

2.2 Correction

Étant donné une fonction construite à l’aide d’une itération, on souhaite montrer que l’exécution de la
fonction produit un résultat conforme à la spécification, plus précisément, nous dirons qu’une fonction est :

— partiellement correcte si la sortie qu’il renvoie est conforme à sa spécification
indépendamment de savoir s’il termine. Autrement dit, si, quand il termine, renvoie une sortie conforme
à sa spécification.

— totalement correcte si, quel que soit son argument conforme à sa spécification, l’algorithme termine
et la sortie qu’il renvoie est conforme à sa spécification.

Pour ce faire, nous allons utiliser un invariant de boucle :

Définition 3 — Étant donné une fonction itérative. Un invariant de boucle est une propriété logique
(ou prédicat) fonction des variables de la k-ième itération telle que :

— Initialisation : avant l’entrée dans la boucle (itération 0) cette propriété soit vraie.
— Récurrence : si la propriété est vraie lors de la k-ième itération, alors cette propriété est vrai lors

de la k + 1-ième.
— Terminaison : si la condition de sortie de la boucle s’applique, la propriété est toujours vrai une fois

sorti de la boucle.

Si un invariant de boucle simple est clairement identifiable, il peut être pertinent de l’écrire dans le Docstring
de la fonction.

Remarque : invariant de boucle et traçage de valeurs.

— Il peut être parfois difficile d’identifier un invariant de boucle. Pour ce faire, il peut être intéressant de
tracer les valeurs au fur et à mesure de l’itération. Pour ce faire, ou bien on les affichera directement
à l’aide de print ou bien on les stockera dans une liste que l’on renverra en fin de fonction.

— A contrario, une fois que l’on a démontré un invariant de boucle, il peut être intéressant de tester cet
invariant au fur et à mesure de l’itération : cela peut se faire par un assert ou tout simplement par
un print de l’expression booléenne associée ou encore par un simple print des valeurs.

Exemples :

1. Nous avons déjà étudié un invariant pour l’algorithme de recherche dichotomique d’un élément dans
une liste triée.

2. Il est intéressant d’identifier un invariant pour plusieurs algorithmes que nous connaissons déjà :
— calcul de la division euclidienne de deux entiers ;
— l’algorithme d’Euclide pour le calcul du pgcd
— résolution de f(x) = 0 ; par la méthode de dichotomie ;
— recherche d’un maximum dans une liste ;

- / -

— calcul d’une somme.

3. Dorénavant, dès que nous établirons un algorithme itératif important, nous identifierons et prouverons
la terminaison à l’aide d’un variant (ce sera notamment le cas, pour l’étude des algorithmes de tri).

2.3 Étude d’un exemple spécifique

On considère la fonction mystere suivante :

1 def mystere(a:int ,b:int) -> int:
2 ’’’
3 Entree : a et b deux entiers strictement positifs
4 Sortie : a*b
5 ’’’
6 x = a
7 y = b
8 total = 0
9 while x > 0:

10 if x % 2 == 1:
11 total = total + y
12 x = x // 2
13 y = y * 2
14 return total

Cela ne semble pas évident au premier coup d’œil que cette fonction renvoie bien le produit qu’elle annonce
dans ses spécifications. Pour ce faire, on peut se donner une idée via un traçage de le la boucle pour une
valeur spécifique :

x y total
18 3 0
9 6 0
4 12 6
2 24 6
1 48 6
0 96 54
fin

- / -

