PC* Devoir Maison N°3

Soit a>0, on pose I=[-a,a], $E=C^{\infty}(I,\mathbb{R})$, Pl l'ensemble des fonctions polynômiales de E, Pl_n l'ensemble des fonctions polynômiales de E de degré inférieur ou égal à n. Pour $f\in E$ on pose

$$\forall x \in I \quad u(f)(x) = \frac{2}{\pi} \int_0^{\pi/2} f(x \sin t) dt \quad \text{et} \qquad \forall x \in I \quad v(f)(x) = f(0) + x \int_0^{\pi/2} f'(x \sin t) dt$$

On admet alors que u(f) et v(f) sont C^{∞} sur I

On admet également que
$$\forall x \in I \quad \forall k \in \mathbb{N} \quad \left(u(f)\right)^{(k)} \left(x\right) = \frac{2}{\pi} \int_0^{\pi/2} (\sin t)^k f^{(k)} \left(x \sin t\right) dt$$

Pour
$$f \in E$$
, on pose $||f||_{\infty} = \sup_{t \in I} |f(t)|$ et $N(f) = ||f||_{\infty} + ||f'||_{\infty}$

On pose aussi $\forall n \in \mathbb{N}$ $W_n = \int_0^{\pi/2} (\sin t)^n dt$ (intégrale de Wallis)

On admet également le théorème de Weierstrass :

- Si f est une application continue sur un intervalle fermé borné $\left[\alpha,\beta\right]$ alors il existe une suite de fonctions polynômiales $\left(f_n\right)_{n\in\mathbb{N}}$ qui converge uniformément vers f sur $\left[\alpha,\beta\right]$
- 1) Montrer que $(W_n)_{n\in\mathbb{N}}$ est strictement décroissante et $W_n\to 0$ $(n\to +\infty)$ (on ne demande pas de calculer W_n)
- 2) Montrer que u et v sont des endomorphismes de E
- 3) Montrer que N est une norme sur E . Les normes $\| \ \|_{\infty}$ et N sont-elles équivalentes ?
- 4) Montrer que $\forall f \in E \quad \|u(f)\|_{\infty} \leq \|f\|_{\infty}$ et $N(u(f)) \leq N(f)$. Montrer qu'il existe une constante C que l'on déterminera telle que $\forall f \in E \quad \|v(f)\|_{\infty} \leq CN(f)$

Expliquer pourquoi
$$\forall (f,g) \in E^2$$
 $\|u(f)-u(g)\|_{\infty} \leq \|f-g\|_{\infty}$; $N(u(f)-u(g)) \leq N(f-g)$; . $\|v(f)-v(g)\|_{\infty} \leq CN(f-g)$

5) Pour $k \in \mathbb{N}$ on pose $\forall x \in I$ $p_k(x) = x^k$, montrer que p_k est un vecteur propre de u et aussi un vecteur propre de v (pour quelles valeurs propres associées?)

En déduire que Pl_n et Pl sont stables par u et par v

6) Montrer que $\forall n \in \mathbb{N}$ $u \circ v(p_n) = p_n$ et $v \circ u(p_n) = p_n$.

Lycée Clemenceau Nantes, PC*, année 2023-2024 En déduire $\forall f \in Pl \quad u \circ v(f) = f$ et $v \circ u(f) = f$

7) Soit $f \in E$, on veut montrer qu'il existe une suite $(f_n)_{n \in \mathbb{N}}$ de Pl telle que $N(f_n - f) \to 0 \quad (n \to +\infty)$

On considère donc $f\in E$. Grâce au théorème de Weierstrass, on dispose d'une suite $(g_n)_{n\in\mathbb{N}}$ de Pl qui converge uniformément vers f' sur I . On considère f_n l'unique primitive de g_n qui vérifie $f_n(0)=f(0)$.On a donc $f'_n=g_n$ et $f_n\in Pl$

Justifier que
$$\forall x \in I$$
 $f_n(x) - f(x) = \int_0^x (f'_n(t) - f'(t)) dt$

En déduire une majoration de $\left|f_n(x)-f(x)\right|$ en fonction de $\left\|f_n'-f'\right\|_{\infty}$

En déduire que $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers f sur I et en déduire que $N(f_n-f)\to 0$ $(n\to +\infty)$

8) Soit $f \in E$, on considère la suite $\left(f_n\right)_{n \in \mathbb{N}}$ de Pl construite à la question précédente.

A l'aide de la question 4, montrer que $\|u \circ v(f_n) - u \circ v(f)\|_{\infty} \to 0$ $(n \to +\infty)$, en déduire que $u \circ v(f) = f$

Montrer également que $\|v \circ u(f_n) - v \circ u(f)\|_{\infty} \to 0$ $(n \to +\infty)$ et en déduire que $v \circ u(f) = f$

En déduire que u et v sont bijectives et que $u^{-1} = v$. Est-ce que 0 est valeur propre de u ? de v ?

- 9) Soit $\lambda \in \mathbb{R}^*$ Montrer que $\lambda \in Sp(u) \Leftrightarrow \frac{1}{\lambda} \in Sp(v)$
- 10) Soit u_n l'endomorphisme induit par u sur Pl_n . Montrer que $Sp(u_n) = \left\{ \frac{2W_k}{\pi}, k \in [0, n] \right\}$ et déterminer les sous espaces propres associés.
- 11) Soit f un vecteur propre de u et λ la valeur propre associée.
- a) Montrer que $\forall x \in I \quad \forall k \in \mathbb{N} \quad \left| \lambda \right| \left| f^{(k)}(x) \right| \leq \frac{2W_k}{\pi} \left\| f^{(k)} \right\|_{\infty}$.
- b) En déduire que $\exists k \in \mathbb{N}^* \quad f^{(k)} = 0$ et en déduire que $f \in Pl$
- c) Soit $n=\deg f$, montrer que f est un vecteur propre de u_n . En déduire que $f=\alpha \ p_n$ (avec $\alpha\in\mathbb{R}$). Quelle est alors la valeur de λ ?
- 12) En conclusion, déterminer Sp(u) et les sous espaces propres associés ainsi que Sp(v) et les sous espaces propres associés.