Programme de colle N°7 : semaine du 12 novembre au 15 novembre

*Déterminants : Révisions et compléments

- -Déterminant d'un système de vecteurs dans une base, déterminant d'une matrice, déterminant d'un endomorphisme, calcul par opérations du pivot de Gauss, développement par rapport à une ligne ou une colonne
- -Déterminant d'une matrice triangulaire par blocs
- -Déterminant de Vandermonde, en particulier déterminant de la base canonique de $K_n[X]$ dans la base formée des polynômes de Lagrange.

*Suites de fonctions et début des séries de fonctions (à valeurs dans $\mathbb R$ ou $\mathbb C$)

- -Suites de fonctions : convergence simple ,révision du théorème de convergence dominée Convergence uniforme . Continuité de la limite uniforme d'une suite de fonctions continues , interversion limite intégrale , th de dérivabilité de la limite d'une suite de fonctions de classe C^1 , extension aux fonctions de classe C^k
- -Séries de fonctions : convergence simple , convergence uniforme, convergence normale, uniforme sur tout segment, normale sur tout segment
- -Continuité de la somme
- -Théorème de la double limite : Supposons que $\sum f_n$ converge uniformément sur un intervalle I, a étant une borne de I (éventuellement infinie). Supposons que $\forall n$ f_n admet une limite finie l_n en a alors $\sum l_n$ converge et $\lim_{x\to a} \sum_{n=0}^{+\infty} f_n(x) = \sum_{n=0}^{+\infty} l_n$
- -Révision de la technique d'encadrement d'une série par des intégrales

<u>Remarque</u>: Pas encore la dérivation terme à terme d'une série de fonctions Pas encore les théorèmes d'intégration terme à terme. Pour les calculs de limites ou d'équivalents, on peut utiliser le th de la double limite ou l'encadrement par des intégrales suivant les circonstances.

*Questions de cours

- 1) Déterminant de Vandermonde
- 2) Etudier la convergence simple et uniforme de la suite de fonctions

$$f_n:[0,1] \to \mathbb{R}$$
, $x \mapsto \frac{x+n}{n+4nx^2}$. Puis déterminer $\lim_{n \to +\infty} \int_0^1 f_n(t) dt$

- 3) On pose $f_n(x) = \frac{(-1)^{n-1}}{n+x^2}$. Etudier la convergence simple , normale et uniforme de la série $\sum_{n\geq 1} f_n$ sur \mathbb{R}^+
- 4) Soit $f(x) = \sum_{n=1}^{+\infty} \frac{e^{-(n-1)x}}{n}$. Montrer que la série de fonctions converge simplement sur \mathbb{R}_+^* et montrer que $\lim_{x \to \infty} f(x) = 1$
- 5) Soit $f(x) = \sum_{n=1}^{+\infty} \frac{(-1)^n e^{-nx}}{\sqrt{n}}$. Montrer que f est continue sur \mathbb{R}^+
- 6) Soit $f(x) = \sum_{n=1}^{+\infty} \frac{e^{-nx}}{\sqrt{n}}$. Montrer que f est continue sur \mathbb{R}_+^*

A suivre : Encore les séries de fonctions , début des espaces vectoriels normés