Révisions d'algèbre et d'algèbre linéaire

- <u>1</u> Déterminer module et argument de $1 + \cos \alpha + i \sin \alpha$
- 2 Résoudre dans \mathbb{C} l'équation $z^2 (5-14i)z 2(5i+12) = 0$.
- $\underline{3}$ Calculer $\sum_{k=0}^{n} \binom{n}{k} \cos(kx)$
- $\underline{\mathbf{4}}$ Soit $a=e^{2i\pi/5}$. On pose $z_1=a+a^4$ et $z_2=a^2+a^3$. Calculer z_1+z_2 et $z_1\,z_2$. En déduire z_1 et z_2 à l'ordre près. En déduire $\cos\left(\frac{2\,\pi}{5}\right)$ et $\cos\left(\frac{4\,\pi}{5}\right)$
- <u>5</u> Trouver les nombres complexes z tels que les points d'affixe $1, z, 1+z^2$ soient alignés
- **6** Soit E un ensemble et $f: E \to E$ telle que $f = f \circ f \circ f$. Montrer que f est surjective si et seulement si f est injective .
- <u>7</u> Soit $f:E \to F$ une application. $A_1, A_2 \subset E$ et $B_1, B_2 \subset F$ Montrer que
 - 1) $f(A_1 \cup A_2) = f(A_1) \cup f(A_2)$
 - 2) $f(A_1 \cap A_2) \subset f(A_1) \cap f(A_2)$
 - 3) $f \text{ est injective} \Rightarrow \forall A_1, A_2 \in P(E) f(A_1 \cap A_2) = f(A_1) \cap f(A_2)$
 - 4) $f^{-1}(B_1 \cup B_2) = f^{-1}(B_1) \cup f^{-1}(B_2)$
- **8** Polynômes de Tchebychev :

Soit $n \in \mathbb{N}^*$, montrer qu'il existe un unique polynôme P_n tel que $\forall \theta \in \mathbb{R}$ $P_n(\cos \theta) = \cos(n \theta)$

Montrer que
$$\,P_0=1\,$$
 , $\,P_1=X\,$ et $\,\forall n\in\mathbb{N}\,$ $\,P_{n+2}=2\,X\,P_{n+1}-P_n$

Déterminer le degré et le coefficient dominant de $\,P_{\scriptscriptstyle n}\,$. Factoriser $\,P_{\scriptscriptstyle n}\,$.

- **9** Déterminer le reste de la division euclidienne de $A = (X-3)^{2n} + (X-2)^n 2$ par $B = (X-2)^2$
- **10** Soit $P \in K[X]$ et $a \in K$ avec $P'''(a) \neq 0$. Soit $Q = \frac{1}{2}(X a)[P' + P'(a)] + P(a) P$

Montrer que a est une racine de Q et trouver son ordre de multiplicité.

11 Soit
$$P \in \mathbb{R}[X]$$
 vérifiant $P(X^2) = P(X)P(X-1)$

- 1) Montrer que si a est racine de P alors a^2 aussi. En déduire a=0 ou |a|=1.
- 2) Montrer que 0 n'est pas racine de P .Montrer que si a est racine de P alors |a+1|=1.
- 3) En déduire les racines de ${\cal P}$ et la factorisation de ${\cal P}$.

12 Factoriser dans
$$\mathbb{C}$$
 le polynôme $P = (X+1)^n - (X-1)^n$, en déduire $\prod_{k=1}^{n-1} \cot an \left(\frac{k\pi}{n}\right)$ et $\sum_{k=1}^{n-1} \cot an \left(\frac{k\pi}{n}\right)$

<u>13</u> Soit $a \in \mathbb{R}$. Déterminer le rang du système de vecteurs :

$$u_1 = (4-a, -6, 2)$$
 $u_2 = (1, -1-a, 1)$ $u_3 = (-1, 2, 1-a)$

<u>14</u> Soit E un espace vectoriel de dimension finie et $f \in L(E)$

Montrer que $Kerf = Kerf^2 \iff E = Kerf \oplus Im f$

- <u>15</u> Soit E un espace vectoriel de dimension n et $f, g \in L(E)$
 - 1) Montrer que $\operatorname{Im}(f+g) \subset \operatorname{Im} f + \operatorname{Im} g$. En déduire que $\operatorname{rg}(f+g) \leq \operatorname{rg}(f) + \operatorname{rg}(g)$
 - 2) Supposons que $f \circ g = 0$ et f + g est bijective .
 - a) Montrer que $\operatorname{Im} g \subset Kerf$
 - b) Montrer que $rg(f) + rg(g) \le n$ puis rg(f) + rg(g) = n
 - c) En déduire $\operatorname{Im} g = Kerf$
- **22** Soit $E = \mathbb{R}_n[X]$ avec $n \ge 3$. Soit $P_k = (X-1)^k$ (k variant de 0 à n) et φ définie sur E par : $\forall P \in E \quad \varphi(P) = (X-1)^2 P'' 2(X-1)P' + 2P 2P(1)$
 - 1) Montrer que $(P_0, P_1, ..., P_n)$ est une base de E .
 - 2) Montrer que $\, arphi \,$ est un endomorphisme de ${\rm E}$. Calculer $\, \, arphi \! \left(P_k \, \right) \,$ pour $\,$ k variant de $\,$ 0 à n .
 - 3) Montrer que $\left(P_0\,,P_1\,,P_2\,\right)$ est une base de $\mathit{Ker}\varphi$ et $\left(P_3\,,P_4\,,\ldots,P_n\right)$ est une base de $\mathit{Im}\,\varphi$.

déduire A^n pour $n \in \mathbb{N}$

24 Soit
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
 .Montrer $\forall n \in \mathbb{N}^* \quad \exists \ a_n \ , b_n \in \mathbb{Z} \quad A^n = a_n \ A + b_n \ A^2$

Déterminer les valeurs de a_n et b_n . En déduire A^n

25 Soit
$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
 . Soit f définie sur $E = M_2(\mathbb{R})$ par $\forall M \in E$ $f(M) = AM$

Montrer que $f \in L(E)$ et déterminer sa matrice dans la base canonique de E

Déterminer une base de $\operatorname{Im} f$ et une base de $\operatorname{Ker} f$

<u>26</u> Soit E un \mathbb{R} - espace vectoriel de dimension 3 et (e_1,e_2,e_3) une base de E

Soit
$$f \in L(E)$$
 telle que $Mat_B(f) = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix} = A$.

- 1) Déterminer (e_1', e_2') une base de Ker(f-Id) et (e_3') une base de Ker(f-4Id)
- 2) Montrer que (e'_1, e'_2, e'_3) est une base de E appelée B'. Déterminer $D = Mat_{B'}(f)$.
- 3) Calculer D^n et en déduire un moyen de calculer A^n
- 4) Soit $p = \frac{1}{3}(f Id)$. Montrer que p est un projecteur et déterminer ses éléments caractéristiques

27 Soit
$$u \in L(\mathbb{R}^3)$$
 tel que $u^3 = -u$, $u \neq 0$, $u^2 \neq -Id$

- a) Montrer que u est non injectif
- b) Montrer que $\mathbb{R}^3 = Ker u \oplus Ker (u^2 + Id)$
- c) Montrer qu'il existe une base $B = (e_1, e_2, e_3)$ de \mathbb{R}^3 telle que $Mat_B(u) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$

(indication : prendre $e_2 \in Ker(u^2 + Id)$ tel que $e_2 \neq 0$, $e_3 = u(e_2)$. Dans quel sev doit on prendre e_1 ?)