PC 2023-24

Corrigé de Centrale 2016 PC math 1

conigé DS 6 Contrale Itimes.

I Autour de la fonction Gamma d'Euler

I.A.1) $f(t) = t^{x-1}e^{-t} \sim_{t\to 0} \frac{1}{t^{1-x}} \text{ donc } \int_0^1 f(t)dt \text{ existe si et seulement si } x > 0.$

Puisque $\lim_{x\to +\infty} t^{x+1} e^{-t} = 0$, $f(t) = o(\frac{1}{t^2})$ donc $\int_1^{+\infty} f(t) dt$ existe pour tout x.

Le domaine de définition de Γ est donc $\mathcal{D} =]0, +\infty[$.

I.A.2) On intègre par parties pour x > 0: $\Gamma(x+1) = [-e^{-t}t^x]_0^{+\infty} + x \int_0^{+\infty} t^{x-1}e^{-t}dt = x\Gamma(x)$ puisque l'expression entre crochets a pour limite 0 en 0 et en $+\infty$.

On en déduit par récurrence, pour $n \ge 1$ et x > 0: $\Gamma(x+n) = \Gamma(x) \prod_{k=0}^{n-1} (x+k)$.

Pour x=1 on obtient avec $\Gamma(1)=\int_0^{+\infty} \mathrm{e}^{-t}\mathrm{d}t=1, \ \Gamma(n+1)=n! \ \mathrm{donc} \ \Gamma(n)=(n-1)! \ \mathrm{pour} \ n\geqslant 1.$

I.A.3) Dans la première intégrale on pose $t=u^{1/2}$ (bijection de classe C^1 de $]0,+\infty[$ dans lui-même):

$$\int_0^{+\infty} \mathrm{e}^{-t^2} \mathrm{d}t = \int_0^{+\infty} \mathrm{e}^{-u} \frac{1}{2} u^{-1/2} \mathrm{d}u = \frac{1}{2} \Gamma(1/2) = \Gamma(3/2).$$

Dans la seconde intégrale on pose $t = u^{1/4}$ (bijection de classe C^1 de $]0, +\infty[$ dans lui-même):

$$\int_0^{+\infty} e^{-t^4} dt = \int_0^{+\infty} e^{-u} \frac{1}{4} u^{-3/4} du = \frac{1}{4} \Gamma(1/4) = \Gamma(5/4).$$

I.B.1) Pour t > 0 fixé et x variant entre a et b, $e^{x \ln t}$ est compris entre $e^{a \ln t}$ et $e^{b \ln t}$ donc $t^x \leq \max(t^a, t^b) \leq t^a + t^b$.

I.B.2) Pour x > 0 et t > 0 posons $f(x,t) = t^{x-1}e^{-t} = e^{(x-1)\ln t - t}$. On calcule $\frac{\partial f^k}{\partial x^k}(x,t) = (\ln t)^k t^{x-1}e^{-t}$.

Pour x > 0 fixé: $|(\ln t)^k t^{x-1} e^{-t}| = 0$ our $(\frac{1}{t^2})$ puisque $\lim_{t \to +\infty} t^{x+1} (\ln t)^k e^{-t} = 0$.

D'autre part $|(\ln t)^k t^{x-1} e^{-t}| \underset{t\to 0}{\sim} |\ln t|^k t^{x/2} \frac{1}{t^{1-x/2}} \underset{t\to 0}{=} o(\frac{1}{t^{1-x/2}})$ qui est intégrable sur]0,1] puisque x>0. On en déduit que $t\mapsto \frac{\partial f^k}{\partial x^k}(x,t)$ est intégrable sur $]0,+\infty[$.

On peut maintenant appliquer le théorème de dérivation sous le signe intégral:

— Pour tout $x\in]0,+\infty[,\,t\mapsto f(x,t)$ est continue et intégrable sur $]0,+\infty[$

- Pour tout $t\in]0,+\infty[,\,x\mapsto f(x,t)$ est de classe C^∞ sur $]0,+\infty[$

- Pour tout $x \in]0, +\infty[$ et pour tout $k \in \mathbb{N}^*, t \mapsto \frac{\partial f^k}{\partial x^k}(x, t)$ est continue sur $]0, +\infty[$

- Pour tout $k \in \mathbb{N}^*$ et pour tout segment $[a,b] \subset]0,+\infty[$ il existe φ continue et intégrable sur $]0,+\infty[$ telle $\left|\frac{\partial f^k}{\partial x^k}(x,t)\right| \leqslant \varphi(t)$: en appliquant le I.B.1 on peut prendre $\varphi(t) = \left|\frac{\partial f^k}{\partial x^k}(a,t)\right| + \left|\frac{\partial f^k}{\partial x^k}(b,t)\right|$.

On en conclut pour x > 0: $\Gamma^{(k)}(x) = \int_0^{+\infty} (\ln t)^k t^{x-1} e^{-t} dt$.

I.C.1) Puisque $(\ln t)^2 > 0$ pour $t \neq 1$, on a $\Gamma''(x) > 0$ et donc Γ' est strictement croissante sur $]0, +\infty[$.

Avec $\Gamma(n)=(n-1)!$ pour $n\in\mathbb{N}^*$ on déduit que $\Gamma(1)=\Gamma(2)=1$. On peut appliquer le théorème de Rolle à Γ sur [1,2] puisqu'elle est de classe C^1 et que $\Gamma(1)=\Gamma(2)$. On en déduit que Γ' s'annule sur [1,2], une seule fois puisque Γ' est strictement croissante. Il existe un unique ξ tel que $\Gamma'(\xi)=0$ et sa partie entière est égale à 1.

I.C.2) Pour $0 < x < \xi$, $\Gamma'(x) < 0$ donc Γ est strictement décroissante. Pour $x > \xi$, $\Gamma'(x) > 0$ donc Γ est strictement croissante.

De $\Gamma(x+1) = x\Gamma(x)$ et de $\Gamma(1) = 1$ on déduit par continuité de Γ en 1 que $\Gamma(x) \sim \frac{1}{x}$ au voisinage de 0^+ et par suite Γ a pour limite $+\infty$ en 0^+ .

Puisque Γ est croissante pour x > 2 et que $\Gamma(n) = (n-1)!$ pour $n \in \mathbb{N}^*$ on déduit que Γ a pour limite $+\infty$ en $+\infty$.

De $\Gamma(x+1)=x\Gamma(x)$ on déduit $\Gamma'(x+1)=\Gamma(x)+x\Gamma'(x)$. Par continuité de Γ' en 1 et avec l'équivalent obtenu pour $\Gamma(x)$ en 0^+ on déduit que $\Gamma'(x) \underset{x\to 0^+}{\sim} -\frac{1}{x^2}$, donc Γ' a pour limite $-\infty$ en 0^+ .

Pour $x > \xi$ on a $\Gamma'(x) > 0$ et par suite $\Gamma'(x+1) = \Gamma(x) + x\Gamma'(x) > \Gamma(x)$: on en déduit que Γ' a pour limite $+\infty$ en $+\infty$.

La courbe représentative de Γ a pour asymptote la droite d'équation x=0. Quand x tend vers $+\infty$ la croissance vers $+\infty$ est très rapide puisque n! croît très vite vers $+\infty$.

II Une transformée de Fourier

$$\text{II.A} \quad \text{ Pour } x \in \mathbb{R} \text{ et } t > 0 \text{ posons } g(x,t) = \mathrm{e}^{-t}t^{-3/4}\mathrm{e}^{ixt}. \text{ On calcule } \frac{\partial g^k}{\partial x^k}(x,t) = (it)^k\mathrm{e}^{-t}t^{-3/4}\mathrm{e}^{ixt}.$$

Pour x fixé et $k \in \mathbb{N}$, $t \mapsto \left| \frac{\partial g^k}{\partial x^k}(x,t) \right| = e^{-t}t^{k-3/4}$ est intégrable sur $]0,+\infty[$ puisque $\Gamma(k+1/4)$ existe.

On peut appliquer le théorème de dérivation sous le signe intégral en dominant la dérivée k-ième par $\varphi(t) = \mathrm{e}^{-t}t^{k-3/4}$. F est donc de classe C^{∞} et $F^{(k)}(x) = i^k \int_0^{+\infty} \mathrm{e}^{-t}t^{k-3/4}\mathrm{e}^{ixt}\mathrm{d}t$.

$$F(0)=\Gamma(1/4).$$

II.B.1) En utilisant le développement en série entière de
$$e^{itx}$$
 on obtient: $F(x) = \int_0^{+\infty} e^{-t} t^{-3/4} \sum_{n=0}^{\infty} \frac{(ixt)^n}{n!} dt$.

Appliquons le théorème d'intégration terme à terme pour la série de fonction $(\sum f_n)$ définie par $f_n(t) = e^{-t}t^{-3/4}\frac{(ixt)^n}{n!}$ (x étant fixé):

- $-f_n$ est continue et intégrable sur $]0,+\infty[$ puisque $|f_n(t)|=\frac{|x|^n}{n!}\mathrm{e}^{-t}t^{n-3/4}$ et que $\Gamma(n+1/4)$ existe.
- La série $(\sum f_n)$ converge pour tout t > 0.
- Si on choisit |x|<1, la série de terme général $u_n=\int_0^{+\infty}|f_n(t)|\mathrm{d}t$ converge.

En effet, $u_n = \frac{|x|^n}{n!} \int_0^{+\infty} e^{-t} t^{n-3/4} dt = \frac{|x|^n}{n!} \Gamma(n+1/4)$. Pour $n \ge 2$, par croissance de la fonction Γ , on obtient $u_n \le \frac{|x|^n}{n!} \Gamma(n+1) = |x|^n$ qui est le terme général d'une série géométrique convergente.

On obtient donc pour |x|<1 en intégrant terme à terme: $F(x)=\sum_{n=0}^{\infty}c_n\frac{(ix)^n}{n!}$ avec $c_n=\Gamma(n+1/4)$.

Avec le résultat du I.A.2) on déduit: $c_n = c_0 \prod_{k=0}^{n-1} (k+1/4)$ avec $c_0 = \Gamma(1/4)$.

La croissance de la fonction Γ pour $x \ge n > 2$ entraı̂ne que $\Gamma(n) \frac{|x|^n}{n!} \le \left| c_n \frac{(ix)^n}{n!} \right| \le \Gamma(n+1) \frac{|x|^n}{n!}$ et par suite $\frac{|x|^n}{n} \le \left| c_n \frac{(ix)^n}{n!} \right| \le |x|^n$. On en déduit que le rayon de convergence est égal à 1.

- II.B.2) L'inégalité que l'on vient de montrer entraı̂ne qu'il n'y a pas convergence absolue pour |x|=1 puisque la série $(\sum \frac{1}{n})$ diverge.

II.C.1) Intégrons par parties:
$$F'(x) = i \int_0^{+\infty} t^{1/4} e^{(ix-1)t} dt = \left[it^{1/4} \frac{e^{(ix-1)t}}{(ix-1)}\right]_0^{+\infty} - \frac{i}{4(ix-1)} \int_0^{+\infty} t^{-3/4} e^{(ix-1)t} dt = -\frac{i}{4(ix-1)} F(x)$$
 puisque les limites en 0 et en $+\infty$ de l'expression entre crochets sont nulles. On a donc bien $F' + AF = 0$ en posant $A(x) = \frac{i}{4(ix-1)} = \frac{1}{4(x+i)}$.

II.C.2) On obtient $A(x) = \frac{x-i}{4(x^2+1)}$ dont une primitive est $G(x) = \frac{1}{8}\ln(1+x^2) - \frac{i}{4}\arctan x$. On en déduit que $(Fe^G)' = (F'+FG')e^G = 0$ d'où $F(x) = Ce^{-G(x)}$ avec $C = F(0) = \Gamma(1/4)$. On obtient donc $F(x) = \Gamma(1/4)(1+x^2)^{-1/8}e^{\frac{i}{4}\arctan x}$.

III A 1-A 2-Soit on utilize la fonction génération (colors)

Soit on calcule E(X) et V(X) "à la main" $E(X) = \sum_{n=1}^{\infty} \sum_{n=1}^{\infty$

- III.A.3) Puisque X et Y sont indépendantes on a $G_{X+Y}(t) = G_X(t)G_Y(t) = e^{(\lambda+\mu)(t-1)}$ donc X+Y a pour loi $\mathcal{P}(\lambda+\mu)$.
- III.B.1) On montre par récurrence que S_n a pour loi $\mathcal{P}(n\lambda)$. C'est vrai pour n=1 puisque $S_1=X_1$. Supposons, pour un entier n, que S_n a pour loi $\mathcal{P}(n\lambda)$. $S_n=X_1+...+X_n$ et X_{n+1} sont indépendantes donc le III.A.3) montre que $S_{n+1}=S_n+X_{n+1}$ a pour loi $\mathcal{P}(n\lambda+\lambda)=\mathcal{P}((n+1)\lambda)$. Le résultat est donc vrai pour tout $n\geqslant 1$.

III.B.2) $E(S_n) = n\lambda$ et $\sigma(S_n) = \sqrt{n\lambda}$. $E(T_n) = \frac{1}{\sqrt{n\lambda}}(n\lambda - n\lambda) = 0$. $\sigma(T_n) = \frac{1}{\sqrt{n\lambda}}\sigma(S_n - \lambda) = 1$.

- III.B.3) Puisque T_n possède une variance on peut lui appliquer l'inégalité de Bienaymé-Tchebychev: $\mathrm{P}(|T_n \mathrm{E}(T_n)| \geqslant c) \leqslant \frac{\mathrm{V}(T_n)}{c^2} \text{ donc } \mathrm{P}(|T_n| \geqslant c) \leqslant \frac{1}{c^2}. \text{ En choisissant } c \geqslant c(\varepsilon) = \frac{1}{\sqrt{\varepsilon}} \text{ on obtient } \mathrm{P}(|T_n| \geqslant c) \leqslant \varepsilon.$
- III.C.1) $f'(x) = -xe^{-\frac{1}{2}x^2}$ et $f''(x) = (x^2 1)e^{-\frac{1}{2}x^2}$. Pour $x \ge 0$, $f'(x) \le 0$ et f' possède un minimum égal à $f'(1) = -e^{-1/2}$. Puisque f' est impaire on en déduit que pour tout $x \in \mathbb{R}$ on a $|f'(x)| \le M = e^{-1/2}$. Cela entraı̂ne que f est M-lipschitzienne.
- III.C.2) a) Pour x fixé posons $g(h) = hf(x) = \int_x^{x+h} f(t)dt$. $|g'(h)| = |f(x) = f(x \neq h)| \leq Mh$ pour h > 0. On en déduit $|g(h)| = |g(h) g(0)| = \left| \int_0^h g'(t)dt \right| \leq \int_0^h |g'(t)|dt \leq \int_0^h Mtdt = M\frac{h^2}{2}$.
 - b) $\left| \frac{1}{\sqrt{n\lambda}} \sum_{k \in I_n} f(x_{k,n}) \int_{x_{p,n}}^{x_{q+1,n}} f(t) dt \right| = \left| \sum_{k=p}^q \left(\frac{f(x_{k,n})}{\sqrt{n\lambda}} \int_{x_{k,n}}^{x_{k+1,n}} f(t) dt \right) \right| \leqslant \sum_{k=p}^q M \frac{1}{2\lambda n} = \frac{M(q+1-p)}{2\lambda n} \text{ en appliquant le a) pour } x = x_{k,n} \text{ et } h = \frac{1}{\sqrt{n\lambda}} \left(\operatorname{car} x_{k+1,n} = x_{k,n} + h \right).$
 - c) D'une part on a $p-1 < n\lambda + a\sqrt{n\lambda} \leqslant p$ donc $a \leqslant x_{p,n} < a + \frac{1}{\sqrt{n\lambda}}$. Par suite $\lim_{n \to +\infty} x_{p,n} = a$. De même, $q \leqslant n\lambda + b\sqrt{n\lambda} < q+1$ donc $b-\frac{1}{\sqrt{n\lambda}} < x_{q,n} \leqslant b$. Par suite $\lim_{n \to +\infty} x_{q,n} = b$. On en déduit puisque f est continue: $\lim_{n \to +\infty} \int_{x_{p,n}}^{x_{q+1,n}} f(t) dt = \int_a^b f(x) dx$. D'autre part $0 \leqslant q-p \leqslant (b-a)\sqrt{n\lambda}$ donc $\lim_{n \to +\infty} \frac{M(q+1-p)}{2\lambda n} = 0$. On en déduit avec le b): $\lim_{n \to +\infty} \frac{1}{\sqrt{n\lambda}} \sum_{k \in I_n} f(x_{k,n}) = \lim_{n \to +\infty} \int_{x_{p,n}}^{x_{q+1,n}} f(t) dt = \int_a^b f(x) dx.$
- III.C.3) a) Par définition, $x_{k,n}\sqrt{n\lambda} = k n\lambda$ donc $y_{k,n} = \left(\frac{n\lambda}{k}\right)^k e^{k-n\lambda}$.

 On en déduit $\frac{\sqrt{2\pi n\lambda}}{y_{k,n}} e^{-n\lambda} \frac{(n\lambda)^k}{k!} = \frac{\sqrt{2\pi n\lambda}k^k}{e^k k!} = \frac{\sqrt{2\pi k}k^k}{e^k k!} \sqrt{\frac{n\lambda}{k}}$.

Puisque $k \in I_n$, on a $1 + \frac{a}{\sqrt{n\lambda}} \leqslant \frac{k}{n\lambda} \leqslant 1 + \frac{b}{\sqrt{n\lambda}}$ donc $\frac{k}{n\lambda}$ a pour limite 1 quand n tend vers $+\infty$. Cela

D'autre part l'équivalent de Stirling entraı̂ne que $\frac{\sqrt{2\pi k}k^k}{e^k k!}$ tend vers 1 quand k tend vers $+\infty$. Par suite, $\frac{\sqrt{2\pi n\lambda}}{y_{k,n}} e^{-n\lambda} \frac{(n\lambda)^k}{k!}$ tend vers 1 quand n tend vers $+\infty$. Il est donc compris entre $1-\varepsilon$ et $1+\varepsilon$ pour $n\geqslant N_1(arepsilon)$ ce qui démontre le résultat demandé.

b) Pour $k \in I_n$ on a $a \leqslant x_{k,n} \leqslant b$ donc $x_{k,n}$ est borné. De plus on a montré que $\frac{k}{n\lambda}$ a pour limite 1 quand ntend vers $+\infty$ donc $\frac{x_{k,n}}{k}\sqrt{n\lambda} = x_{k,n}\frac{n\lambda}{k}\frac{1}{\sqrt{n\lambda}}$ tend vers 0 quand n tend vers $+\infty$.

On peut donc utiliser le développement limité $\ln(1+t) = t - \frac{1}{2}t^2 + \mathrm{o}(t^2)$ avec $t = \frac{x_{k,n}}{k}\sqrt{n\lambda}$. On obtient:

$$\ln(y_{k,n}) - \ln f(x_{k,n}) = k \ln(1 - \frac{x_{k,n}}{k} \sqrt{n\lambda}) + x_{k,n} \sqrt{n\lambda} + \frac{1}{2} x_{k,n}^2$$

$$= k \left(-\frac{x_{k,n}}{k} \sqrt{n\lambda} - \frac{1}{2} \left(\frac{x_{k,n}}{k} \sqrt{n\lambda} \right)^2 + o\left(\left(\frac{x_{k,n}}{k} \sqrt{n\lambda} \right)^2 \right) \right) + x_{k,n} \sqrt{n\lambda} + \frac{1}{2} x_{k,n}^2$$

$$= \frac{1}{2} x_{k,n}^2 \left(1 - \frac{n\lambda}{k} + o\left(\frac{n\lambda}{k} \right) \right).$$

Cette expression a pour limite 0 quand n tend vers $+\infty$ puisque $x_{k,n}$ est borné et $\frac{k}{n\lambda}$ a pour limite 1. On en déduit que $\frac{y_{k,n}}{f(x_{k,n})}$ a pour limite 1 et on obtient l'inégalité demandée pour $n \geqslant N_2(\varepsilon)$.

III.C.4) On déduit de la question précédente que:

$$\frac{(1-\varepsilon)^2}{\sqrt{2\pi}} \frac{1}{\sqrt{n\lambda}} \sum_{k \in I_n} f(x_{k,n}) \leqslant \sum_{k \in I_n} \frac{(n\lambda)^k}{k!} e^{-n\lambda} \leqslant \frac{(1+\varepsilon)^2}{\sqrt{2\pi}} \frac{1}{\sqrt{n\lambda}} \sum_{k \in I_n} f(x_{k,n}).$$

Avec le III.C.2)c) on déduit $\lim_{n\to+\infty} \sum_{k\in I} \frac{(n\lambda)^k}{k!} e^{-n\lambda} = \frac{1}{\sqrt{2\pi}} \int_a^b f(x) dx$.

III.C.5) $P(a \leqslant T_n \leqslant b) = P(n\lambda + a\sqrt{n\lambda} \leqslant S_n \leqslant n\lambda + b\sqrt{n\lambda}) = \sum_{k \in I_n} P(S_n = k)$ puisque S_n ne prend que des valeurs

entières. $\lim_{n\to\infty} \mathbb{P}(a \leq T_n \leq b) = \lim_{n\to\infty} \int_a^b f(n) dn$ III.C.6) Puisque S_n a pour loi $\mathcal{P}(n\lambda)$, $P(a \leq T_n \leq b) = \sum_{k\in I_n} \frac{(n\lambda)^k}{k!} e^{-n\lambda}$ donc $\lim_{n\to+\infty} P(a \leq T_n \leq b) = \frac{1}{\sqrt{2\pi}} \int_a^b f(x) dx$.

Pour c > a on a $P(T_n \ge a) = P(a \le T_n \le c) + P(T_n > c)$. Soit $\varepsilon > 0$. Avec la question III.B.3) on peut choisir c_1 tel que pour $c > c_1$ on ait $P(T_n > c) \le P(|T_n| \ge c) \le \varepsilon$. D'autre part, puisque f(x) = c + c + c = c of $\frac{1}{x^2}$, f est

intégrable sur \mathbb{R}^+ , donc on peut choisir c_2 tel que pour $c > c_2$ on ait $\frac{1}{\sqrt{2\pi}} \left| \int_a^{+\infty} f(x) dx - \int_a^c f(x) dx \right| \leqslant \varepsilon$.

Pour $c > \max(c_1, c_2)$ on a $\left| P(T_n \geqslant a) - \frac{1}{\sqrt{2\pi}} \int_a^{+\infty} f(x) dx \right| \leqslant 2\varepsilon + \left| P(a \leqslant T_n \leqslant c) - \frac{1}{\sqrt{2\pi}} \int_a^c f(x) dx \right| \leqslant 3\varepsilon$ pour $n \geqslant n_0$. Par suite $\lim_{n \to +\infty} P(T_n \geqslant a) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x) dx$.

Pour tout $\varepsilon > 0$, $P(T_n = a) \le P(a \le T_n \le a + \varepsilon)$ qui tend vers $\frac{1}{\sqrt{2\pi}} \int_a^{a+\varepsilon} f(x) dx$ quand n tend vers $+\infty$. Comme cette intégrale peut être arbitrairement proche de 0, on en déduit que $\lim_{n \to +\infty} P(T_n = a) = 0$.

$$\lim_{n \to +\infty} P(T_n > a) = \lim_{n \to +\infty} P(T_n \geqslant a) = \frac{1}{\sqrt{2\pi}} \int_a^{+\infty} f(x) dx.$$
$$\lim_{n \to +\infty} P(T_n \leqslant b) = 1 - \lim_{n \to +\infty} P(T_n > b) = 1 - \frac{1}{\sqrt{2\pi}} \int_b^{+\infty} f(x) dx.$$

III.D.1) Avec le III.B.3) on a pour $b\leqslant -c(\varepsilon)$: $\mathrm{P}(T_n\leqslant b)\leqslant \mathrm{P}(T_n\geqslant |b|)\leqslant \varepsilon$. On en déduit avec $\lim_{n\to +\infty}\mathrm{P}(T_n\leqslant b)=0$ $1 - \frac{1}{\sqrt{2\pi}} \int_{b}^{+\infty} f(x) dx \text{ que } \int_{-\infty}^{+\infty} f(x) dx = \sqrt{2\pi}.$

III.D.2) $e^{-n\lambda}A_n = \sum_{k=0}^{\lfloor n\lambda\rfloor} P(S_n = k) = P(S_n \leqslant n\lambda)$ puisque S_n ne prend que des valeurs entières.

On a donc $e^{-n\lambda}A_n = P(T_n \leqslant 0)$ qui tend vers $1 - \frac{1}{\sqrt{2\pi}} \int_0^{+\infty} f(x) dx = \frac{1}{2}$ par parité de la fonction f.

On a donc $A_n \sim \frac{1}{2} e^{n\lambda}$.

 $e^{-n\lambda}(A_n + B_n) = 1 + e^{-n\lambda} \frac{(n\lambda)^k}{k!}$ avec $k = \lfloor n\lambda \rfloor$. Comme $k \leqslant n\lambda < k+1$ on a:

 $\mathrm{e}^{-n\lambda}\frac{(n\lambda)^k}{k!}\leqslant \mathrm{e}^{-k}\frac{(k+1)^k}{k!}\sim (1+\tfrac{i}{k})^k\frac{1}{\sqrt{2\pi k}} \text{ qui tend vers 0 puisque } k \text{ tend vers } +\infty \text{ quand } n \text{ tend vers } +\infty \text{ et}$ $(1+\tfrac{i}{k})^k \text{ a pour limite e. Par suite } B_n\sim \frac{1}{2}\mathrm{e}^{n\lambda}.$

III.D.3) $e^{-n\lambda}C_n = \sum_{k=0}^n P(S_n = k) = P(S_n \leqslant n) = P(T_n \leqslant \frac{1-\lambda}{\sqrt{\lambda}}\sqrt{n}).$

Pour tout $\varepsilon > 0$ il existe b tel que $\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{b} f(x) dx \geqslant 1 - \varepsilon$. Puisque $1 - \lambda > 0$, on a $\frac{1 - \lambda}{\sqrt{\lambda}} \sqrt{n} \geqslant b$ pour $n \geqslant n_1$.

On a alors $e^{-n\lambda}C_n\geqslant P(T_n\leqslant b)$ qui tend vers $\frac{1}{\sqrt{2\pi}}\int_{-\infty}^b f(x)\mathrm{d}x\geqslant 1-\varepsilon$. On en déduit, puisque que $e^{-n\lambda}C_n\leqslant 1$ (c'est une probabilité), que $e^{-n\lambda}C_n$ a pour limite 1 si $\lambda<1$.

 $e^{-n\lambda}D_n = \sum_{k=-1}^{+\infty} P(S_n = k) = P(S_n > n) = P(T_n > \frac{1-\lambda}{\sqrt{\lambda}}\sqrt{n})$. Pour tout $\varepsilon > 0$ il existe a < 0 tel que

 $\frac{1}{\sqrt{2\pi}} \int_{a}^{\infty} f(x) dx \geqslant 1 - \varepsilon. \text{ Puisque } 1 - \lambda < 0, \text{ on a } \frac{1 - \lambda}{\sqrt{\lambda}} \sqrt{n} \leqslant a \text{ pour } n \geqslant n_2. \text{ On a alors } e^{-n\lambda} D_n \geqslant P(T_n > a)$

qui tend vers $\frac{1}{\sqrt{2\pi}} \int_a^{\infty} f(x) dx \ge 1 - \varepsilon$. On en déduit, puisque que $e^{-n\lambda} D_n \le 1$ (c'est une probabilité), que $e^{-n\lambda} D_n$ a pour limite 1 si $\lambda > 1$.

III.E.1) $(n\lambda)^{-n} \int_0^{n\lambda} (n\lambda - t)^n e^t dt = \int_0^{n\lambda} \left(1 - \frac{t}{n\lambda}\right)^n e^t dt.$

Définissons $f_n(t) = \left(1 - \frac{t}{n\lambda}\right)^n e^t$ si $t < n\lambda$ et $f_n(t) = 0$ si $t \ge n\lambda$ et utilisons le théorème de convergence dominée pour calculer la limite de $\int_0^{+\infty} f_n(t) dt$.

Chaque fonction f_n est continue sur \mathbb{R}^+ (la limite à gauche en $t = n\lambda$ de $f_n(t)$ est égale à 0).

Pour n > t on a $f_n(t) = e^{t + n \ln(1 - \frac{t}{n\lambda})}$ qui a pour limite $f(t) = e^{t(1 - \frac{1}{\lambda})}$ quand n tend vers $+\infty$, puisque $n \ln(1 - \frac{t}{n\lambda}) \sim -\frac{t}{\lambda}$. La suite (f_n) converge donc simplement vers la fonction f qui est continue sur \mathbb{R}^+ .

La majoration connue $\ln(1+x) \leqslant x$ entraı̂ne pour $t < n\lambda$ que $f_n(t) \leqslant e^{t(1-\frac{1}{\lambda})} = f(t)$. C'est aussi vérifié pour $t \geqslant n\lambda$ puisque $f_n(t) = 0$. La fonction f est intégrable sur $[0, +\infty[$ puisque $1 - \frac{1}{\lambda} < 0$.

Le théorème de convergence dominée s'applique et donc:

$$\lim_{n\to+\infty}\left((n\lambda)^{-n}\int_0^{n\lambda}(n\lambda-t)^n\mathrm{e}^t\mathrm{d}t\right)=\int_0^{+\infty}f(t)\mathrm{d}t=\left[\frac{\mathrm{e}^{t(1-\frac{1}{\lambda})}}{(1-\frac{1}{\lambda})}\right]_0^{+\infty}=\frac{\lambda}{1-\lambda}.$$

III.E.2) Appliquons la formule de Taylor avec reste intégral à l'ordre n pour la fonction exp sur l'intervalle $[0, n\lambda]$:

 $\mathrm{e}^{n\lambda} = \sum_{k=0}^n \frac{(n\lambda)^k}{k!} + \int_0^{n\lambda} \frac{(n\lambda - t)^n}{n!} e^t \mathrm{d}t. \text{ On en déduit avec le résultat du III.E.1)}:$

$$D_n = \mathrm{e}^{n\lambda} - \sum_{k=0}^n \frac{(n\lambda)^k}{k!} = \int_0^{n\lambda} \frac{(n\lambda - t)^n}{n!} e^t \mathrm{d}t \sim \frac{\lambda}{1 - \lambda} \frac{(n\lambda)^n}{n!} \text{ quand } \lambda < 1.$$

III.F Intégrons par parties: $\int_{-\infty}^{0} \frac{(r-t)^n}{n!} e^t dt = \left[\frac{(r-t)^n}{n!} e^t \right]_{-\infty}^{0} + \int_{-\infty}^{0} \frac{(r-t)^{n-1}}{(n-1)!} e^t dt.$ C'est légitime: les intégrales existent car $(r-t)^n e^t = o(\frac{1}{t^2})$ en $-\infty$ et l'expression entre crochets a une limite en 0 et en $-\infty$. On obtient $\int_{-\infty}^{0} \frac{(r-t)^n}{n!} e^t dt = \frac{r^n}{n!} + \int_{-\infty}^{0} \frac{(r-t)^{n-1}}{(n-1)!} e^t dt.$ On continue à intégrer par parties et on montre par récurrence sur k que:

$$\int_{-\infty}^{0} \frac{(r-t)^{n}}{n!} e^{t} dt = \frac{r^{n}}{n!} + \dots + \frac{r^{n-k+1}}{(n-k+1)!} + \int_{-\infty}^{0} \frac{(r-t)^{n-k}}{(n-k)!} e^{t} dt.$$

On obtient finalement pour k = n: $\int_{-\infty}^{0} \frac{(r-t)^n}{n!} e^t dt = \frac{r^n}{n!} + \dots + \frac{r^1}{1!} + \int_{-\infty}^{0} e^t dt$ qui est égal à C_n si on choisit

On a donc $C_n = \frac{(n\lambda)^n}{n!} \int_0^1 \left(1 - \frac{t}{n\lambda}\right)^n e^t dt$.

Appliquons à nouveau le théorème de convergence dominée pour calculer la limite de $\int_0^0 g_n(t) dt$ avec $g_n(t) =$ $\left(1-\frac{t}{n\lambda}\right)^n e^t$:

Chaque fonction g_n est continue sur \mathbb{R}^- .

Puisque $t \leq 0$ on peut écrire $g_n(t) = e^{t+n\ln(1-\frac{t}{n\lambda})}$ qui a pour limite $f(t) = e^{t(1-\frac{1}{\lambda})}$ quand n tend vers $+\infty$ (comme à la question III.E.1) avec f qui est continue sur \mathbb{R}^- .

La majoration connue $\ln(1+x) \leqslant x$ entraı̂ne que $g_n(t) \leqslant e^{t(1-\frac{1}{\lambda})} = f(t)$. La fonction f est intégrable sur $]-\infty,0]$

Le théorème de convergence dominée s'applique et donc:

$$\lim_{n\to +\infty} \int_{-\infty}^0 g_n(t) \mathrm{d}t = \int_{-\infty}^0 f(t) \mathrm{d}t = \left[\frac{\mathrm{e}^{t(1-\frac{1}{\lambda})}}{(1-\frac{1}{\lambda})} \right]_{-\infty}^0 = \frac{\lambda}{\lambda-1}.$$

On en déduit que $C_n \sim \frac{\lambda}{\lambda - 1} \frac{(n\lambda)^n}{n!}$ quand $\lambda > 1$.

(H) question I B13)

Montrous que ni fut DSE, vlas fachmet un DL en O à tout

ndre en S: fet DSE, alus fert (o m J-R, RE (R son rayon de convergence)

on jeut lui appliquer taylor Young en o

nfine: x >0 fini = \ \frac{2}{3} \frac{111}{11} \tau +0(x^2)

or le DSE de f vieur tre J-R, RE fini= E finite) na les coefficients du DL sont les mêmes que les coeff de la

serie entière.