COLLE 02/12/2024

Programme : Ondes mécaniques à une dimension sur l'exemple des cordes. Module d'Young, onde acoustique dans les solides.

Propagation d'une onde électromagnétique dans le vide.

Le TD sur les ondes dans le vide commencera mercredi 4 décembre

Questions de cours proposées :

I. Onde mécanique à 1D

- 1. Démonstration de l'équation de D'Alembert à 1D sur l'exemple des cordes.
- 2. Équation de D'Alembert 1D, solution générale, interprétation physique.
- 3. Onde progressive harmonique (OPH): définition, notation complexe.
- 4. Relation de dispersion (OPH), vitesse de phase (OPH)
- 5. Expression d'une onde stationnaire. Modes propres, allure graphique des différents modes (nœuds, ventres, distance entre eux)
- 6. Principe de la décomposition sur les modes propres pour obtenir la forme d'une corde attachée à ses extrémités quelque soit t.
- 7. Résonance d'une corde en oscillation forcée (savoir décrire qualitativement ce qui se passe lorsque l'on approche des pulsations propres, discussion de la réalité physique du modèle).

II. Ondes acoustiques dnas les solides

1. Définition du module d'Young, sens physique, ordre de grandeurs

III. Ondes dans le vide

- 1. Les différents opérateurs en coordonnées cartésiennes.
- 2. Établir l'équation de propagation d'une OEM dans le vide.
- 3. Ordre de grandeur : les différents domaines EM (longueur d'onde et/ou fréquence).
- 4. Décrire la structure d'une OEMPPH dans le vide. Décrire la structure d'une OEMPP dans le vide.
- 5. Équations de Maxwell en complexe.
- 6. Vecteur de Poynting, direction, lien avec le photon. Retrouver rapidement l'expression dans le cas d'une onde plane. Ordre de grandeur de flux (soleil, laser He-Ne). Vitesse de propagation de l'énergie.
- 7. Polarisation d'une OPPH (Les différents types de polarisation ont été vues mais le TP sera fait plus tard).