$\begin{array}{c} \text{Semaine 8} \\ \text{du } 18/11 \text{ au } 22/11 \end{array}$

Ondes mécaniques dans les solides

Chapitres au programme (cours & exercices)

- Modélisation d'ondes mécaniques : découverte de l'équation d'onde de d'Alembert
- $\bullet\,$ Résolution de l'équation de d'Alembert à une dimension : familles de solutions & applications

Valeurs numériques & Ordres de grandeur utiles

À connaître par cœur : tous les ordres de grandeur des semaines 1 à 7

Détails sur le contenu des chapitres

Modélisation d'ondes mécaniques - Équation d'onde de d'Alembert

Ondes transversales sur une corde vibrante.	Établir l'équation d'onde décrivant les ondes transversales sur une corde vibrante infiniment souple dans l'approximation des petits mouvements transverses.
Domaine d'élasticité d'un solide : module de Young, loi de Hooke.	Exploiter le modèle de la chaîne d'atomes élastiquement liés pour relier le module de Young d'un solide élastique à ses caractéristiques microscopiques.
Ondes mécaniques longitudinales dans une tige solide dans l'approximation des milieux continus.	Établir l'équation d'onde décrivant les ondes mécaniques longitudinales dans une tige solide.
Équation de d'Alembert ; célérité.	Identifier l'équation de d'Alembert. Relier qualitativement la célérité d'ondes mécaniques, la raideur et l'inertie du milieu support.

Résolution de l'équation de d'Alembert : Familles de solutions & Applications

Ondes progressives, ondes progressives harmoniques; ondes stationnaires.	Différencier une onde stationnaire d'une onde progressive. Utiliser qualitativement l'analyse de Fourier pour décrire une onde non harmonique.
Modes propres d'une corde vibrante fixée à ses deux extrémités. Résonances d'une corde de Melde.	Décrire les modes propres d'une corde vibrante fixée à ses deux extrémités. Interpréter quantitativement les résonances observées avec la corde de Melde en négligeant l'amortissement.