Semaine 9 du 24/11 au 28/11

Électromagnétisme

Chapitres au programme (cours & exercices)

- *Révisions*: Induction électromagnétique de Neumann (conducteur fixe dans un champ magnétique variable au cours du temps)
- Analyse vectorielle pour la physique
- Fondements de l'électromagnétisme : Équations de Maxwell
- Magnétostatique : Lois générales & applications

Valeurs numériques & Ordres de grandeur utiles

À connaître par cœur : en plus de tous les ordres de grandeur des semaines 1 à 8

- Perméabilité magnétique du vide $\mu_0 = 4\pi \times 10^{-7} \,\mathrm{H\cdot m^{-1}}$
- Permittivité diélectrique du vide $\varepsilon_0 \approx 8.8 \cdot 10^{-12} \; \text{F} \cdot \text{m}^{-1}$
- Champ magnétique terrestre à la surface de la Terre $B \sim 50~\mu T$
- Champ magnétique créé par un aimant (au voisinage de l'aimant $B\sim 0,1$ à 1 T ; par un électroaimant $B\sim 10$ T
- Inductance propre des bobines utilisées en TP $L \sim \text{qques mH}$

À savoir estimer rapidement : densité de courant dans un fil électrique, champ magnétique produit par un fil ou par une bobine assimilée à un solénoïde infini, énergie magnétique d'un circuit ...

Détails sur le contenu des chapitres

Induction électromagnétique de Neumann (révisions de PCSI)

2. Lois de l'induction		
Flux d'un champ magnétique à travers une surface s'appuyant sur un contour fermé orienté.	Évaluer le flux d'un champ magnétique uniforme à travers une surface s'appuyant sur un contour fermé orienté plan.	
Loi de Faraday Courant induit par le déplacement relatif d'une boucle conductrice par rapport à un aimant ou un circuit inducteur. Sens du courant induit.	Décrire, mettre en œuvre et interpréter des expériences illustrant les lois de Lenz et de Faraday.	
Loi de modération de Lenz.	Utiliser la loi de Lenz pour prédire ou interpréter les phénomènes physiques observés.	
Force électromotrice induite, loi de Faraday.	Utiliser la loi de Faraday en précisant les conventions d'algébrisation.	
4. Circuit fixe dans un champ magnétique qui dépend du temps		
Auto-induction		
Flux propre et inductance propre.	Différencier le flux propre des flux extérieurs. Utiliser la loi de modération de Lenz. Évaluer et citer l'ordre de grandeur de l'inductance propre d'une bobine de grande longueur.	
Étude énergétique.	Réaliser un bilan de puissance et d'énergie dans un système siège d'un phénomène d'auto-induction en s'appuyant sur un schéma électrique équivalent.	
Cas de deux bobines en interaction		
Inductance mutuelle entre deux bobines.	Déterminer l'inductance mutuelle entre deux bobines de même axe de grande longueur en « influence totale ».	
Circuits électriques à une maille couplés par le phénomène de mutuelle induction en régime sinusoïdal forcé.	Citer des applications dans le domaine de l'industrie ou de la vie courante. Établir le système d'équations en régime sinusoïdal forcé en s'appuyant sur des schémas électriques équivalents.	
Transformateur de tension.	Établir la loi des tensions.	
Étude énergétique.	Réaliser un bilan de puissance et d'énergie.	

Analyse vectorielle pour la physique

Gradient.	Relier le gradient à la différentielle d'un champ scalaire à une date fixée. Exprimer les composantes du gradient en coordonnées cartésiennes.
Divergence.	Citer et utiliser le théorème d'Ostrogradski. Exprimer la divergence en coordonnées cartésiennes.
Rotationnel.	Citer et utiliser le théorème de Stokes. Exprimer le rotationnel en coordonnées cartésiennes.
Laplacien d'un champ scalaire.	Définir le laplacien à l'aide de la divergence et du gradient. Exprimer le laplacien en coordonnées cartésiennes.
Laplacien d'un champ de vecteurs.	Exprimer le laplacien d'un champ de vecteurs en coordonnées cartésiennes.

Fondements de l'électromagnétisme : Équations de Maxwell

1. Postulats de l'électromagnétisme		
Force de Lorentz. Équations locales de Maxwell. Formes intégrales.	Utiliser les équations de Maxwell sous forme lo- cale ou intégrale.	
	Relier l'équation de Maxwell-Faraday et la loi de Faraday.	
	Établir l'équation locale de la conservation de la charge à partir des équations de Maxwell.	
2. Aspects énergétiques		
Vecteur de Poynting. Densité volumique d'énergie électromagnétique. Équation locale de Poynting.	Utiliser les grandeurs énergétiques pour conduire des bilans d'énergie électromagnétique.	
	Associer le vecteur de Poynting et l'intensité lumineuse utilisée dans le domaine de l'optique.	

Magnétostatique : Lois générales & applications

1. Champ magnétostatique		
Équations locales de la magnétostatique et formes intégrales : flux conservatif et théorème d'Ampère.	Choisir un contour fermé et une surface et les orienter pour appliquer le théorème d'Ampère.	
Linéarité des équations	Utiliser une méthode de superposition.	
Propriétés de symétrie.	Exploiter les propriétés de symétrie des sources (translation, rotation, symétrie plane) pour prévoir des propriétés du champ créé.	
Propriétés topographiques.	Justifier qu'une carte de lignes de champs puisse ou non être celle d'un champ magnétostatique. Repérer, sur une carte de champ magnétosta- tique, d'éventuelles sources du champ et leur sens.	
	Associer l'évolution de la norme d'un champ magnétique à l'évasement des tubes de champ.	
2. Exemples de champs magnétostatiques		
Modèle du câble rectiligne infini.	Déterminer le champ créé par un câble rectiligne infini.	
Solénoïde long sans effet de bords.	Établir et citer l'expression du champ à l'intérieur d'un solénoïde long, la nullité du champ extérieur étant admise.	
Inductance propre. Densité volumique d'énergie magnétique.	Établir les expressions de l'inductance propre et de l'énergie d'une bobine modélisée par un solé- noïde long. Associer l'énergie d'une bobine à une densité vo- lumique d'énergie magnétique.	