bonjour,

> voici le prog de la semaine du 12/02 au 16/02/24 :

ONDES:

chap 5 : ondes ACOUSTIQUES dans les fluides:

*approximation accoustique

*dem 3d : linéarisation eq Euler, CONS de la masse, caractère isentropique: eq de d'Alembert sur surpression et vitesse(****)

*dem 1D: sur une tranche de fluide

Les étudiants sont censés connaître les 2 types de démonstration solutions :OPPH, notation complexe, OPP par superposition, conséquence: caractère longitudinal, impédance acoustique

*ondes stationnaires (tuyau ouvert ou fermé à une extrémité), ondes sphériques harmoniques divergentes (sphère pulsante)

*étude énergétique : introduction du vecteur densité de courant énergétique, densité volumique d'energie sonore, eq énergétique locale, forme intégrée et interprétation, analogie et différence avec energie e.m

* justification à postériori de l'APP acoustique

* intensité acoustique : def , ordres de grandeur

*réflexion et transmission d'une onde acoustique sur une interface plane, sous incidence normale:

coeff de reflexion et transmission en amplitude pour la vitesse , pour la surpression (nouveau), pour les puissances,

notion d'adaptation d'impédance

*effet Doppler longitudinal, rappel sur la détection Synchrone (TP effectué en octobre)

chap 6 : ondes e.m dans le vide

equation de propagation solution : opp, opph

introduction de la notation complexe

mise en évidence de la structure: transverse, relation de structure et de dispersion

polarisation: PR, PE, PC gauche ou droit.

chap 7 : ondes e.m dans les milieux :dispersion-absorption :

* onde em dans un plasma neutre sans collision :

description, conductivité complexe du plasma, interprétation énergétique : non absorption

*propagation d'une onde em dans un milieu neutre possédant une conductivité complexe : structure de l'onde (pseudo onde plane progressive), relation de dispersion : dispersion, absorption, indice complexe

applications:

*plasma (pulsation plasma, 2 cas de figure: ondes progressives ou ondes evanescentes

*conducteurs ohmiques : conductivité réelle : effet de peau, analogie avec la diffusion, calcul de B et aspect énergétique

Ne rien poser sur ce qui suit :

*Propagation d'un paquet d'ondes dans un milieu peu dispersif et non absorbant :

cas du « paquet » de 2 ondes : onde moyenne , onde enveloppe :introduction de vg cas du paquet gaussien d'ondes (calcul exact pour « profil rectangulaire » (*****) aspect énergétique : vg = ve, relation courante entre vitesse de phase et vg, illustration sur le plasma (cas des ondes progressives)

* réflexion et réfraction d'une onde incidente sur un dioptre plan entre 2 milieux d'indice complexe n1 et n2 :

coeff de réflexion et de transmission en amplitude (en incidence normale) pour E et B adaptation d'impédance: couche anti reflet coeff de réflexion et de transmission en puissance

applications: interface vide/ plasma ou interface VIDE/ conducteur

TP COURS POLARISATION

polarisation: PR, PE, PC gauche ou droit.

Lumière naturelle non polarisée

polarisation par reflexion (incidence de Brewster), dichroisme (polaroid, loi de Malus), lames à retard (demi-onde, quart d'onde)

ATTENTION

etude du rayonnement dipolaire et diffusion Rayleigh HP : donc polarisation par diffusion Rayleigh non traitée

(*****) NORMALEMENT HP