BONJOUR,

voici le prog de la semaine du 07/10 au 11/10/24:

INSISTER SUR LES ECOULEMENTS (ils maitrisent pas) et la diffusion

CHAP 3: THERMODYNAMIQUE DES SYSTEMES OUVERTS en régime stationnaire

- *modèle de l'écoulement unidimensionnel
- * réduction à un système fermé
- * bilan de masse
- *premier principe : bilan d'énergie $\Delta h + \Delta e = wu + q$ où e : énergie mécanique massique les D sont des "delta"
- *second principe: bilan d'entropie

chap 4: transition de phases

(uniquement transition de phase du premier ordre)

- * étude expérimentale: diagramme d'équilibre (P, V) et (P,T): point triple et critique: continuité de l'état fluide, variance (****)
 - *étude énergétique: def de L: chaleur latente, formule de Clapeyron (***)
 - * diagramme (T,S) et (P, h)

chap 0: operateurs de l'analyse vectorielle:

champ scalaire, surface équipotentielle, champ vectoriel, ligne de champ, tube de champ,

div, gradient, rot, laplacien, opérateur Nabla théorème Stokes + Ostrogradski

champ dérivant d'un potentiel scalaire, d'un pot vecteur, propriétés

chap 5: Diffusion ET RAYONNEMENT

A) diffusion particulaire: loi de Fick, équation de diffusion (dem 1D en cartésien et cyl et 3D (****), avec terme de création ou anihilation, longueur et temps caractéristique de diffusion

NB :Les bilans en coord cylindiques ou sphériques (sur une couronne) sont de nouveau au prog : J'ai donc fait ces bilans sur des couronnes cyl ou sphérique...

Etude en regime permanent , analogie avec ELEC

Poser pour l'instant uniquement des exos en régime permanent

Ce qui suit n' a pas été traité : ne rien poser * cas du regime transitoire : choc particulaire (****),

CAS DE LA MARCHE AU HASARD:

*modèle simple pour les solides,

diffusion en présence d'un champs extérieur (pesanteur) : cas de l'atm : relation d'Einstein

diffusion thermique et rayonnement pas au programme

N.B: (***): normalement HP.

merci pour votre collaboration.

BON W.E.

^{*}modèle plus compliqué pour les fluides pour retrouver le cas du choc particulaire (injection de N0 molécules de soluté en x=0 à t = 0 dans un solvant)