PC*: DS3 - 4h - calculatrices interdites.

« Il est dur d'échouer. Mais il est pire de n'avoir jamais tenté de réussir » Roosevelt

Problème 1 : Intégrales de Dirichlet.

Partie A: On cherche ici à calculer $I = \int_{0}^{+\infty} \frac{\sin(t)}{t} dt$.

- 1) Montrer que $I = \int_{0}^{+\infty} \frac{\sin(t)}{t} dt$ est convergente.
- 2) Pour $n \in \mathbb{N}$, on pose $J_n = \int_0^{\pi/2} \frac{\sin((2n+1)t)}{\sin(t)} dt$.
 - a) Justifier que l'intégrale J_n est convergente.
 - b) Calculer $J_n J_{n-1}$ pour $n \in \mathbb{N}^*$ et en déduire J_n pour tout $n \in \mathbb{N}$.
- 3) Soit $\varphi: \left[0, \frac{\pi}{2}\right] \to \mathbb{R}$, de classe C^1 . Montrer que $\int_0^{\pi/2} \varphi(t) \sin(nt) dt \underset{n \to +\infty}{\longrightarrow} 0$. On pourra utiliser une intégration par parties.
- 4) On pose $\varphi(x) = \frac{1}{x} \frac{1}{\sin(x)}$ pour $x \in \left[0, \frac{\pi}{2}\right]$ et $\varphi(0) = 0$. Montrer que φ est C^1 sur $\left[0, \frac{\pi}{2}\right]$.
- 5) En déduire que $\int_{0}^{\pi/2} \frac{\sin((2n+1)t)}{t} dt \xrightarrow[n \to +\infty]{\pi} \frac{\pi}{2}.$
- 6) Déterminer la valeur de I.
- 7) Déterminer, pour tout $j \in \mathbb{N}^*$, la valeur de l'intégrale impropre $\int_0^+ \frac{\sin(jt)}{t} dt$.
- 8) Soit n un entier naturel tel que $n \ge 2$.
 - a) Justifier que l'intégrale impropre $I_n = \int_0^{+\infty} \frac{\sin^n(t)}{t^n} dt$ est convergente.
 - b) Quelle est la valeur de $I_2 = \int_0^{+\infty} \frac{\sin^2(t)}{t^2} dt$?

Partie B: On cherche ici à déterminer un équivalent de $I_n = \int_0^{+\infty} \frac{\sin^n(t)}{t^n} dt$ lorsque n tend vers l'infini.

- 1) On considère la fonction g définie de \mathbb{R} dans \mathbb{R} par g(0) = 1 et $\forall t \neq 0, g(t) = \frac{\sin t}{t}$.
 - a) Etudier la monotonie de g sur l'intervalle $\left]0, \frac{\pi}{2}\right]$.
 - b) Donner le développement limité en 0 à l'ordre 4 de la fonction $t \mapsto \ln(g(t))$
- 2) On pose, pour tout entier naturel n non nul et tout réel t > 0: $h_n(t) = \sin^n t$. Soit n un entier naturel tel que $n \ge 2$.
 - a) Soit $k \in [0, n-1]$. Justifier l'existence d'un réel C_k pour lequel, pour tout réel t, on a $\left|h_n^{(k)}(t)\right| \leq C_k$
 - b) Quel est le développement limité à l'ordre n en 0 de la fonction h_n ?
 - c) En déduire pour $k \in \llbracket 0, n \rrbracket$ l'égalité $\lim_{t \to 0} \frac{h_n^{(k)}(t)}{t^{n-k}} = \frac{n!}{(n-k)!}$
 - d) Justifier, pour tout entier $k \in [0, n-2]$ la convergence absolue de l'intégrale $\int_{0}^{+\infty} \frac{h_n^{(k)}(t)}{t^{n-k}} dt$.

e) Justifier la convergence de l'intégrale
$$\int\limits_0^{+\infty} \frac{h_n^{(n-1)}(t)}{t} dt$$
 et établir l'égalité

$$I_n = \int_0^{+\infty} \frac{\sin^n(t)}{t^n} dt = \frac{1}{(n-1)!} \int_0^{+\infty} \frac{h_n^{(n-1)}(t)}{t} dt$$

3) Soit
$$n \in \mathbb{N}^*$$
.

a) Établir, pour tout réel
$$t: h_{2n}(t) = \frac{1}{4^n} \sum_{k=0}^{2n} (-1)^{n+k} \binom{2n}{k} e^{i(2n-2k)t}$$
.

b) En déduire, pour tout réel
$$t$$
, $h_{2n}^{(2n-1)}(t) = \sum_{j=1}^{n} (-1)^{n+j} \binom{2n}{n+j} j^{2n-1} \sin(2jt)$.

c) En déduire l'égalité
$$\int_{0}^{+\infty} \frac{\sin^{2n}(t)}{t^{2n}} dt = \frac{\pi}{2} \frac{1}{(2n-1)!} \sum_{j=1}^{n} (-1)^{n+j} {2n \choose n+j} j^{2n-1}.$$

4) Étude asymptotique de la suite de terme général
$$I_n$$

a) Prouver, quand l'entier
$$n$$
 tend vers $+\infty$ l'évaluation $\int_{\pi/2}^{+\infty} \frac{\sin^n(t)}{t^n} dt = o\left(\frac{1}{\sqrt{n}}\right)$.

b) A l'aide de B1a) et B1b), établir
$$\int_{\frac{\ln n}{\sqrt{n}}}^{\pi/2} \frac{\sin^n(t)}{t^n} dt = o\left(\frac{1}{\sqrt{n}}\right)$$

On pourra déterminer un équivalent de
$$\ln\left(\frac{\sin \varepsilon_n}{\varepsilon_n}\right)$$
, où $\varepsilon_n = \frac{\ln(n)}{\sqrt{n}}$

5) a) Justifier l'existence de
$$a > 0$$
 tel que, pour tout $u \in [0, a]$ on a $|e^{-u} - 1| \le 2u$.

b) Justifier l'existence d'un réel
$$b > 0$$
 tel que $\forall t \in]0,b], -t^3 \le \ln\left(\frac{\sin t}{t}\right) + \frac{t^2}{6} \le 0$.

$$\left| \int_{0}^{\ln(n)} \left(\frac{\sin t}{t} \right)^{n} dt - \int_{0}^{\ln(n)} e^{-n\frac{t^{2}}{6}} dt \right| \leq \int_{0}^{\ln(n)} \left(1 - e^{-nt^{3}} \right) dt .$$

d) Montrer pour
$$n$$
 assez grand
$$\left| \int_{0}^{\frac{\ln(n)}{\sqrt{n}}} \left(\frac{\sin t}{t} \right)^{n} dt - \int_{0}^{\frac{\ln(n)}{\sqrt{n}}} e^{-n\frac{t^{2}}{6}} dt \right| \leq \frac{2\ln^{4}(n)}{n}$$

e) On admet que
$$\int_{0}^{+\infty} e^{-\frac{u^2}{2}} du$$
 converge et que $\int_{0}^{+\infty} e^{-\frac{u^2}{2}} du = \sqrt{\frac{\pi}{2}}$. Déterminer un équivalent de $\int_{0}^{\frac{\ln(n)}{\sqrt{n}}} e^{-n\frac{t^2}{6}} dt$ lorsque n tend vers $+\infty$.

f) En déduire, lorsque l'entier
$$n$$
 tend vers $+\infty$: $I_n = \int_0^{+\infty} \frac{\sin^n(t)}{t^n} dt \sum_{n \to +\infty} \sqrt{\frac{3\pi}{2n}}$

Problème 2 : Une inégalité entre sommes de series.

On note E l'ensemble des suites réelles (indexées par \mathbb{N}^*) à termes strictement positifs telles que la série $\sum a_n$ converge. On pose, pour tout élément $(a_n)_{n\in\mathbb{N}^*}$ de E et pour tout entier n non nul $h_n = \frac{n}{\sum_{k=1}^n \frac{1}{a_k}}$

L'objet de l'exercice est de prouver la convergence de $\sum h_n$ et de comparer sa somme avec celle de $\sum a_n$.

- 1) Un premier exemple. On pose, dans cette question, pour tout entier naturel n non nul, $a_n = \frac{1}{n(n+1)}$.
 - a) Montrer que la série $\sum a_n$ converge et déterminer la somme $\sum_{n=1}^{+\infty} a_n$.
 - b) Calculer, pour tout entier naturel n non nul, la valeur de h_n .
 - c) Etablir la convergence de la série $\sum h_n$ et déterminer la somme $\sum_{i=1}^{+\infty} h_n$.
- 2) Un second exemple. Soit q un réel de]0,1[On pose, pour tout entier naturel n non nul, $a_n = q^{n-1}$.
 - a) Indiquer la valeur de la somme $\sum_{n=1}^{+\infty} a_n$ et celle de h_n pour $n \in \mathbb{N}^*$.
 - b) Etablir la convergence de la série $\sum h_n$.
- 3) Soit n un entier non nul et soient $(x_1,...,x_n)$ et $(y_1,...,y_n)$ deux n -uplets de nombres réels.
 - a) Prouver l'égalité : $\left(\sum_{i=1}^{n} x_i y_i\right)^2 + \sum_{1 \le i < j \le n} \left(x_i y_j x_j y_i\right)^2 = \left(\sum_{i=1}^{n} x_i^2\right) \left(\sum_{i=1}^{n} y_i^2\right).$
 - b) En déduire l'inégalité de Cauchy-Schwarz : $\left| \sum_{i=1}^{n} x_i y_i \right| \le \sqrt{\sum_{i=1}^{n} x_i^2} \sqrt{\sum_{i=1}^{n} y_i^2}$
- 4) Prouver que pour tout entier naturel k non nul la série $\sum_{n\geq k}\frac{1}{n(n+1)^2}$ converge et que $\sum_{n=k}^{+\infty}\frac{1}{n(n+1)^2}\leq \frac{1}{2\,k^2}$. On s'intéressera à la monotonie de la suite de terme général $U_k=\frac{1}{2\,k^2}-\sum_{n=k}^{+\infty}\frac{1}{n\,(n+1)^2}$.
- 5) Soit $(a_n)_{n\in\mathbb{N}^*}$ un élément de E.
 - a) Prouver, pour tout entier naturel n non nul, l'inégalité : $\left(\frac{n(n+1)}{2}\right)^2 \le \left(\sum_{k=1}^n k^2 a_k\right) \left(\sum_{k=1}^n \frac{1}{a_k}\right)$.
 - b) En déduire, pour tout entier nature p non nul, l'inégalité $\sum_{n=1}^{p} h_n \le 4 \sum_{n=1}^{p} \frac{1}{n(n+1)^2} \left(\sum_{k=1}^{n} k^2 a_k \right)$.
 - c) Prouver, pour tout entier naturel p non nul, l'inégalité : $\sum_{n=1}^{p} h_n \le 2\sum_{k=1}^{p} a_k$.
 - d) En déduire la convergence de la série $\sum h_n$ et l'inégalité $\sum_{n=1}^{+\infty} h_n \le 2 \sum_{n=1}^{+\infty} a_n$
- 6) Soit C un réel strictement positif tel que, pour tout élément $(a_n)_{n\in\mathbb{N}}$ de E, on a $\sum_{n=1}^{+\infty}h_n\leq C\sum_{n=1}^{+\infty}a_n$ On va montrer que C est au moins égal à 2. On pose, pour tout entier naturel n non nul, $a_n=\frac{1}{n^\alpha}$, où $\alpha>1$. On rappelle qu'on dispose de l'égalité $\sum_{n=1}^{+\infty}\frac{1}{n^2}=\frac{\pi^2}{6}$.

- a) Prouver l'inégalité $\sum_{n=1}^{+\infty} \frac{n}{(n+1)^{\alpha+1}} \ge \sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}} \frac{\pi^2}{6}.$
- b) Prouver, pour tout entier naturel n non nul, l'inégalité $h_n \ge (\alpha + 1) \frac{n}{(n+1)^{\alpha+1}}$.
- c) Prouver que $\lim_{\substack{\alpha \to 1 \\ \alpha > 1}} \sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}} = +\infty$.
- d) Conclure que $C \ge 2$.