DM 3 : corrigé

Problème 1: Soit $(a_n)_{n\geq 1}$ une suite de réels strictement positifs.

On lui associe la suite (p_n) définie par $p_n = \prod_{i=1}^n a_i$.

On dit que le produit $\prod_{k>1} a_k$ converge si et seulement si la suite (p_n) converge vers une limite finie **non nulle**.

Dans le contraire, on dit que $\prod a_k$ diverge.

En cas de convergence de la suite (p_n) , sa limite est notée $\prod_{k=1}^{+\infty} a_k$ et s'appelle valeur du produit $\prod_{k=1}^{+\infty} a_k$.

- 1) Pour $n \in \mathbb{N}^*$, on calcule $p_n = \prod_{n=1}^n \left(1 \frac{1}{p+1}\right) = \prod_{p=1}^n \left(\frac{p}{p+1}\right) = \frac{n!}{(n+1)!} = \frac{1}{n+1}$. Donc $p_n = \prod_{n=1}^n \left(1 - \frac{1}{p+1}\right) \xrightarrow[n \to +\infty]{} 0$ et $\left|\prod_{n \ge 1} \left(1 - \frac{1}{p+1}\right)\right|$ diverge.
- 2) Pour $n \in \mathbb{N}^*$, on calcule $p_n = \prod_{n=1}^n \left(1 \frac{1}{(n+1)^2}\right) = \prod_{n=1}^n \left(\frac{p^2 + 2p}{(n+1)^2}\right) = \prod_{n=1}^n p \prod_{n=1}^n (2+p) \left(\prod_{n=1}^n \frac{1}{1+p}\right)^2$. Donc $p_n = \frac{1}{2} \frac{n!(n+2)!}{((n+1)!)^2} = \frac{1}{2} \frac{n+2}{n+1} \xrightarrow[n \to +\infty]{} \frac{1}{2} \neq 0.$

Donc t
$$\overline{\prod_{p \ge 1} \left(1 - \frac{1}{\left(p + 1 \right)^2} \right)}$$
 converge. De plus,
$$\prod_{p=1}^{+\infty} \left(1 - \frac{1}{\left(p + 1 \right)^2} \right) = \frac{1}{2}$$

3) On suppose que $\prod_{k\geq 1} a_k$ converge. On pose pour $n \in \mathbb{N}^*$: $p_n = \prod_{k=1}^n a_k$. Alors $\frac{p_n}{p_{n-1}} = a_n$. Il vient alors

$$p_n \underset{n \to +\infty}{\longrightarrow} c \in \mathbb{R}^*$$
, donc $\frac{p_n}{p_{n-1}} = a_n \underset{n \to +\infty}{\longrightarrow} \frac{c}{c} = 1$ et $a_n \underset{n \to +\infty}{\longrightarrow} 1$.

La réciproque est fausse : on prend $a_n = 1 - \frac{1}{n+1} \xrightarrow[n \to +\infty]{} 1$ et pourtant avec 1), $\prod_{n > 1} \left(1 - \frac{1}{p+1} \right)$ diverge.

4) Soit $n \in \mathbb{N}^*$. On calcule $p_n = \prod_{k=1}^n (1 - \frac{1}{4k^2}) = \prod_{k=1}^n (\frac{4k^2 - 1}{4k^2}) = \frac{1}{2^{2n} (n!)^2} \prod_{k=1}^n (2k - 1) \prod_{k=1}^n (2k + 1)$.

Or
$$\prod_{k=1}^{n} (2k-1) = 1*3*...*(2n-1) = \frac{(2n)!}{2^{n}n!}$$
 et $\prod_{k=1}^{n} (2k+1) = 3*...*(2n-1)*(2n+1) = \frac{(2n+1)!}{2^{n}n!}$ en multipliant

1

dans chacun de ces deux cas en haut et en bas par les termes pairs.

Donc
$$p_n = \frac{1}{2^{4n} (n!)^4} (2n+1) ((2n)!)^2$$

La formule de Stirling donne
$$n! \sum_{n \to +\infty} \left(\frac{n}{e}\right)^n \sqrt{2n\pi}$$
, et ainsi $(2n)! \sum_{n \to +\infty} \left(\frac{2n}{e}\right)^{2n} \sqrt{4n\pi}$

Donc $p_n = \frac{1}{2^{4n} \left(n!\right)^4} (2n+1) \left(\left(2n\right)!\right)^2 = \frac{(2n+1)(4n\pi)}{\left(2n\pi\right)^2} \sum_{n \to +\infty} \frac{8n^2\pi}{4n^2\pi^2}$.

Donc $p_n = \frac{1}{2^{4n} \left(n!\right)^4} \left(2n+1\right) \left(\left(2n\right)!\right)^2 = \frac{2}{\pi}$

- 5) Soit $(a_n)_{n\geq 1}$ une suite de réels strictement positifs
 - On procède par double implication. On suppose que le produit $\prod_{k\geq 1} a_k$ est convergent. Soit $N\geq 1$. Alors $\sum_{k=1}^N \ln(a_k) = \ln\left(\prod_{k=1}^N a_k\right)$, avec $\prod_{k=1}^N a_k \geq 0$. On sait que le produit est convergent, et en passant les inégalités à la limité, $\prod_{k=1}^+ a_k \geq 0$. De plus, par définition, $\prod_{k=1}^+ a_k \neq 0$, donc $\prod_{k=1}^+ a_k > 0$. Ainsi, $\sum_{k=1}^N \ln(a_k) = \ln\left(\prod_{k=1}^N a_k\right) \xrightarrow[N \to +\infty]{} \ln\left(\prod_{k=1}^+ a_k\right)$, donc $\sum \ln(a_k)$ converge. Réciproquement, si $\sum \ln(a_k)$ converge, alors $\prod_{k=1}^N a_k = \exp\left(\sum_{k=1}^N \ln(a_k)\right) \xrightarrow[N \to +\infty]{} \exp\left(\sum_{k=1}^+ \ln(a_k)\right)$. Donc $\prod_{k\geq 1} a_k$ est convergent et on a bien $\prod_{k\geq 1} a_k$ est convergent si et seulement si la série $\sum \ln(a_k)$ converge.
 - b) Pour $p \in \mathbb{N}^*$, on a bien $a_p = \sqrt[p]{p} = p^{1/p} > 0$. Alors $\ln\left(a_p\right) = \frac{1}{p}\ln(p)$.

 Pour $p \ge 3$, $\frac{1}{p}\ln(p) \ge \frac{1}{p} \ge 0$, et comme $\sum_{p\ge 1} \frac{1}{p}$ diverge, $\sum_{p\ge 1} \ln\left(a_p\right)$ diverge.

 Donc avec 5a), $\prod_{p\ge 1} \sqrt[p]{p}$ diverge.
- 6) On considère une suite (U_n) de réels strictement supérieurs à -1.
 - a) On procède par double implication.

On suppose (P1). Alors le produit infini $\prod_{n\geq 1} (1+U_n)$ converge.

On en déduit avec 5a) que $\sum \ln(1+U_n)$ converge.

En particulier, $\ln{(1+U_n)} \underset{n \to +\infty}{\longrightarrow} 0$, donc $1+U_n \underset{n \to +\infty}{\longrightarrow} 1$ et $U_n \underset{n \to +\infty}{\longrightarrow} 0$.

Donc $\ln(1+U_n) \sim U_n$. Comme $\forall n \in \mathbb{N}^*, U_n > 0$, on en déduit que la série $\sum_{n \geq 1} U_n$ converge et (P2) est vérifiée.

On suppose (P2). Alors $\sum_{n\geq 1}U_n$ converge, donc $U_n\underset{n\to +\infty}{\longrightarrow} 0$ et $\ln{(1+U_n)}\underset{n\to +\infty}{\sim} U_n$. Comme

 $\forall n \in \mathbb{N}^*, U_n > 0, \sum \ln(1 + U_n) \text{ converge et } \prod_{n>1} (1 + U_n) \text{ converge. } .$

On a bien (P1) et (P2) équivalentes si $\forall n \in \mathbb{N}^*, U_n > 0$

b) On suppose que $\forall n \in \mathbb{N}^*, U_n = \frac{(-1)^n}{\sqrt{n}} + \frac{1}{2n}$. On sait déjà que $\sum_{n \ge 1} \frac{1}{2n}$ diverge. De plus, $\sum_{n \ge 1} \frac{(-1)^n}{\sqrt{n}}$ est alternée, et $\left(\frac{1}{\sqrt{n}}\right)$ est décroissante et tend vers 0. Donc avec le théorème spécial sur les séries alternées, $\sum U_n$ diverge.

De plus, on pose pour $n \in \mathbb{N}^*$ $a_n = 1 + \frac{(-1)^n}{\sqrt{n}} + \frac{1}{2n} > 0$ (en effet $1 + \frac{(-1)^n}{\sqrt{n}} \ge 0$). On sait avec 5a) que

 $\prod_{n\geq 1} a_n$ est convergent si et seulement si la série $\sum \ln(a_n)$ converge.

On étudie donc
$$V_n = \ln\left(1 + \frac{(-1)^n}{\sqrt{n}} + \frac{1}{2n}\right)$$
.

On sait que $\ln(1+u) = u - \frac{1}{2}u^2 + \frac{1}{3}u^3 + o(u^3) = u - \frac{1}{2}u^2 + O(u^3)$.

Ici,
$$u = \frac{(-1)^n}{\sqrt{n}} + \frac{1}{2n}$$
, $u^2 = \frac{1}{n \to +\infty} + O\left(\frac{1}{n^{3/2}}\right)$, $u^3 = O\left(\frac{1}{n^{3/2}}\right)$.

Donc
$$V_n = \ln \left(1 + \frac{(-1)^n}{\sqrt{n}} + \frac{1}{2n} \right) = \frac{(-1)^n}{\sqrt{n}} + O\left(\frac{1}{n^{3/2}} \right).$$

Or $\sum_{n\geq 1} \frac{(-1)^n}{\sqrt{n}}$ converge, et comme $\frac{3}{2} > 1$, $\sum_{n\geq 1} O\left(\frac{1}{n^{3/2}}\right)$ est absolument convergente, donc convergente.

Donc
$$\sum \ln(1+U_n)$$
 converge et $\prod_{n\geq 1} (1+U_n)$ converge.

Le résultat du 5a) devient faux si on ne suppose plus $\forall n \in \mathbb{N}^*, U_n > 0$

- 7) On suppose dans cette question que la série $\sum U_n$ converge.
 - a) On procède par double implication.

On suppose que $\prod_{n\geq 1} (1+U_n)$ converge.

On en déduit avec 5a) que $\sum \ln(1+U_n)$ converge.

En particulier, $\ln (1+U_n) \underset{n \to +\infty}{\longrightarrow} 0$, donc $1+U_n \underset{n \to +\infty}{\longrightarrow} 1$ et $U_n \underset{n \to +\infty}{\longrightarrow} 0$.

$$\text{Donc } \ln \left(1 + U_n \right) \underset{n \to +\infty}{=} U_n - \frac{1}{2} \left(U_n \right)^2 + o \left(\left(U_n \right)^2 \right). \text{ On note } W_n = \ln \left(1 + U_n \right) - U_n = -\frac{1}{2} \left(U_n \right)^2 + o \left(\left(U_n \right)^2 \right).$$

Alors $\sum \ln(1+U_n)$ converge et $\sum U_n$ converge, donc $\sum W_n$ converge aussi.

Or
$$W_n \underset{n \to +\infty}{\sim} -\frac{1}{2} (U_n)^2$$
, et $\left(-\frac{1}{2} (U_n)^2\right)$ est de signe fixe. Donc $\sum U_n^2$ converge.

Réciproquement, si $\sum U_n^2$ converge, alors $\sum W_n$ converge. Comme $\sum U_n$ converge, $U_n \xrightarrow[n \to +\infty]{} 0$ et

$$\ln(1+U_n) = U_n + W_n$$
, donc $\sum \ln(1+U_n)$ converge et $\prod_{n\geq 1} (1+U_n)$ converge.

Ainsi, le produit $\prod_{n\geq 1} (1+U_n)$ converge si et seulement si la série $\sum U_n^2$ converge.

On suppose ici que $\sum U_n^2$ diverge. Soit $N \in \mathbb{N}^*$.

Alors $\sum W_n$ diverge, et comme $W_n \sim \frac{1}{N \to +\infty} - \frac{1}{2} (U_n)^2$, on a $W_n \le 0$ à partir d'un certain rang N. Pour

 $n \ge N$, la suite (S_n) définie par $S_n = \sum_{k=1}^n W_k$ est décroissante et diverge. Donc $S_n = \sum_{k=1}^n W_k \underset{n \to +\infty}{\longrightarrow} -\infty$.

$$\operatorname{Donc} \ln \left(\prod_{k=1}^{n} \left(1 + U_{k} \right) \right) = \sum_{k=1}^{n} \ln \left(1 + U_{k} \right) = \sum_{k=1}^{n} U_{k} + \sum_{k=1}^{n} W_{k} \underset{n \to +\infty}{\longrightarrow} -\infty.$$

Donc
$$P_n = \prod_{k=1}^n (1 + U_k) \underset{n \to +\infty}{\longrightarrow} 0$$

b) On suppose que la série $\sum U_n$ est absolument convergente. Alors $U_n \underset{n \to +\infty}{\to} 0$, donc $U_n^2 \underset{n \to +\infty}{=} o\left(\left(\left|U_n\right|\right)\right)$. Or $\left(\left|U_n\right|\right)$ est de signe fixe et $\sum \left|U_n\right|$ converge, donc $\sum U_n^2$ converge.

Avec 7a),
$$\prod_{n\geq 1} (1+U_n)$$
 converge.

c) On considère pour $n \in \mathbb{N}^*$ $U_n = \frac{(-1)^n}{2\sqrt{n}} \ge -\frac{1}{2} > -1$.

Avec le théorème spécial sur les séries alternées, $\sum_{n\geq 1} U_n$ converge.

Pourtant, $(U_n)^2 = \frac{1}{4n}$ et $\sum U_n^2$ diverge, donc avec 7a), $\prod_{n>1} (1+U_n)$ diverge.

Finalement, si on ne suppose pas $\forall n \in \mathbb{N}^*, U_n > 0$, on n'a ni $(P1) \Rightarrow (P2)$, ni $(P2) \Rightarrow (P1)$

Problème 2 (BECEAS 21) : pour tout suite réelle (U_n) , on notera $\sum_{n\geq 0} U_n$ la série de terme général U_n et $\sum_{n=0}^{+\infty} U_n$ la somme de cette série lorsqu'elle converge.

Partie A: Exemples de calcul explicite de reste.

1) On suppose que $\sum_{n\geq 0}U_n$ est convergente. On pose $R_n=\sum_{k=n}^{+\infty}U_k=\sum_{k=0}^{+\infty}U_k-\sum_{k=0}^{n-1}U_k$.

Alors, lorsque n tend vers l'infini, $\sum_{k=0}^{n-1} U_k \xrightarrow[n \to +\infty]{} \sum_{k=0}^{+\infty} U_k$ par définition de la convergence d'une série.

Donc
$$R_n = \sum_{k=n}^{+\infty} U_k \xrightarrow[n \to +\infty]{} 0$$

- 2) x désigne un nombre réel non nul, de signe quelconque.
 - a) On utilise la règle de d'Alembert en posant $V_n = \frac{x^{2n}}{(2n)!} > 0$. Alors $\frac{V_{n+1}}{V_n} = \frac{x^2}{(2n+2)(2n+1)} \xrightarrow[n \to +\infty]{} 0$.

Donc la série
$$\sum_{n\geq 0} \frac{x^{2n}}{(2n)!}$$
 est convergente.

De plus, on sait que pour tout réel t, la série $\sum_{n\geq 0} \frac{t^n}{n!}$ est convergente et que $\sum_{n=0}^{+\infty} \frac{t^n}{n!} = e^t$.

Dès lors,
$$ch(x) = \frac{1}{2} \left(e^x + e^{-x} \right) = \sum_{n=0}^{+\infty} \frac{x^n \left(1 + (-1)^n \right)}{n!} = 2 \sum_{n=0}^{+\infty} \frac{x^n}{n!} = 2 \sum_{p=0}^{+\infty} \frac{x^{2p}}{(2p)!}.$$

On a donc bien
$$\sum_{n=0}^{+\infty} \frac{x^{2n}}{(2n)!} = ch(x)$$

- b) Par récurrence sur $n \in \mathbb{N}^*$, on prouve P(n): " $\sum_{k=n}^{+\infty} \frac{x^{2k}}{(2k)!} = \int_{0}^{x} \frac{(x-t)^{2n-2}}{(2n-2)!} sh(t) dt$ ".
 - Pour n = 1, on calcule $\int_{0}^{x} sh(t) dt = ch(x) 1 = \sum_{k=1}^{+\infty} \frac{x^{2k}}{(2k)!}$, donc P(1) est vraie.

Soit $n \in \mathbb{N}^*$ tel que P(n) est vraie. Montrons P(n+1).

On sait que
$$\sum_{k=n}^{+\infty} \frac{x^{2k}}{(2k)!} = \int_{0}^{x} \frac{(x-t)^{2n-2}}{(2n-2)!} sh(t) dt$$
.

On effectue deux intégrations par parties successives (les fonctions concernées sont de classe C^{∞}).

On note
$$\begin{cases} a'(t) = \frac{(x-t)^{2n-2}}{(2n-2)!} & \text{et on prend} \\ b(t) = sh(t) \end{cases} \begin{cases} a(t) = -\frac{(x-t)^{2n-1}}{(2n-1)!} \\ b'(t) = ch(t) \end{cases}$$

Alors
$$\int_{0}^{x} \frac{(x-t)^{2n-2}}{(2n-2)!} sh(t) dt = 0 + \int_{0}^{x} \frac{(x-t)^{2n-1}}{(2n-1)!} ch(t) dt.$$

Puis
$$\int_{0}^{x} \frac{(x-t)^{2n-2}}{(2n-2)!} sh(t) dt = \left[-\frac{(x-t)^{2n}}{(2n)!} ch(t) \right]_{0}^{x} + \int_{0}^{x} \frac{(x-t)^{2n}}{(2n)!} sh(t) dt = \frac{x^{2n}}{(2n)!} + \int_{0}^{x} \frac{(x-t)^{2n}}{(2n)!} sh(t) dt = \frac{x^{2n}}{(2n)!}$$

On a donc bien $\sum_{k=n+1}^{+\infty} \frac{x^{2k}}{(2k)!} = \int_{0}^{x} \frac{(x-t)^{2n}}{(2n)!} sh(t) dt$ et P(n+1) est vraie.

a) On sait que $\arctan(x) \underset{x\to 0}{\sim} x$, donc $a_n \underset{n\to +\infty}{\sim} \frac{2n}{n^4 + n^2 + 2} \underset{n\to +\infty}{\sim} \frac{2}{n^3}$

Or
$$\left(\frac{2}{n^3}\right)$$
 est de signe fixe, $\sum_{n\geq 1} \frac{2}{n^3}$ converge d'après Riemann, donc $\sum_{n\geq 0} a_n$ est convergente.

b) On cherche P,Q sous la forme $P(X) = X^2 + bX + c$ et $Q(X) = X^2 + dX + e$.

Alors
$$P(X)Q(X) = (X^2 + bX + c)(X^2 + dX + e) = X^4 + (b+d)X^3 + (c+e+bd)X^2 + (be+cd)X + ce$$
.

On veut donc
$$\begin{cases} b-d=2\\ b+d=0 \end{cases}$$
, soit $b=-d=1$, puis
$$\begin{cases} c+e-1=1\\ e=c \end{cases}$$
, soit $e=c=1$.

On prend ainsi $P = X^2 + X + 1$ et $Q = X^2 - X + 1$. Réciproquement, ils conviennent

c) On fixe
$$y \in \mathbb{R}_+$$
.

On considère la fonction définie sur
$$\mathbb{R}_+$$
 par $f(x) = \arctan\left(\frac{x-y}{1+xy}\right) - \arctan(x) + \arctan(y)$.

Elle est dérivable sur
$$\mathbb{R}_{+}$$
 et $f'(x) = \frac{1 + xy - y(x - y)}{\left(1 + xy\right)^{2}} \frac{1}{1 + \left(\frac{x - y}{1 + xy}\right)^{2}} - \frac{1}{1 + x^{2}}$.

Donc
$$f'(x) = \frac{1+y^2}{(1+xy)^2 + (x-y)^2} - \frac{1}{1+x^2} = \frac{1+y^2}{(1+x^2) + y^2(1+x^2)} - \frac{1}{1+x^2} = 0$$
.

Donc
$$f$$
 est constante sur \mathbb{R}_+ et $f(y) = 0$, donc f est constante, nulle sur \mathbb{R}_+ .

Donc
$$\forall x, y \in \mathbb{R}_+, \arctan\left(\frac{x-y}{1+xy}\right) = \arctan(x) - \arctan(y)$$
.

d) On reprend 3b) pour
$$n \in \mathbb{N}$$
: $a_n = \arctan\left(\frac{2n}{n^4 + n^2 + 2}\right) = \arctan\left(\frac{P(n) - Q(n)}{1 + P(n)Q(n)}\right)$.

Donc avec 3c),
$$a_n = \arctan(P(n)) - \arctan(Q(n))$$
.

Or
$$Q(n+1) = (n+1)^2 - (n+1) + 1 = n^2 + n + 1 = P(n)$$
 et $a_n = \arctan(Q(n+1)) - \arctan(Q(n))$

Donc pour
$$N \ge n$$
, $\sum_{k=n}^{N} a_k = \sum_{k=n}^{N} \left(\arctan\left(Q(k+1)\right) - \arctan\left(Q(k)\right)\right) = \arctan\left(Q(N+1)\right) - \arctan\left(Q(n)\right)$.

Donc en passant à la limite quand
$$N$$
 tend vers l'infini :
$$\sum_{k=n}^{+\infty} a_k = \frac{\pi}{2} - \arctan(n^2 - n + 1)$$

e) On sait que si
$$x > 0$$
, $\frac{\pi}{2} - \arctan(x) = \arctan\left(\frac{1}{x}\right)$. Donc $\sum_{k=n}^{+\infty} a_k = \arctan\left(\frac{1}{n^2 - n + 1}\right) \sum_{n \to +\infty} \frac{1}{n^2}$.

Or
$$\left(\frac{1}{n^2}\right)$$
 est de signe fixe, $\sum_{n\geq 1}\frac{1}{n^2}$ converge d'après Riemann, donc $\sum_{n\geq 0}\left(\sum_{k=n}^{+\infty}a_k\right)$ est convergente

Partie B: Exemples d'évaluation asymptotique du reste

1) Soit $x \in \mathbb{R}$. On procède par disjonction de cas.

• Si
$$x > 1$$
. Alors soit $y \in \left[1, x\right[$. Il vient $n^y \frac{\ln(n)}{n^x} = \frac{\ln(n)}{n^{x-y}} \xrightarrow[n \to +\infty]{} 0$

Donc
$$\frac{\ln(n)}{n^x} = o\left(\frac{1}{n^y}\right)$$
. Or $\left(\frac{1}{n^y}\right)$ est de signe fixe, $\sum_{n\geq 1} \frac{1}{n^y}$ converge car $y>1$.

Donc
$$\sum_{n\geq 1} \frac{\ln(n)}{n^x}$$
 est convergente.

• Si
$$x \le 1$$
, alors pour $n \ge 3$, $\frac{\ln(n)}{n^x} \ge \frac{1}{n^x} \ge 0$. Comme $\sum_{n \ge 1} \frac{1}{n^y}$ diverge, $\sum_{n \ge 1} \frac{\ln(n)}{n^x}$ est divergente.

Donc
$$\sum_{n\geq 1} \frac{\ln(n)}{n^x}$$
 est convergente si et seulement si, $x>1$.

2)

a) Soit
$$x > 1$$
. On veut calculer $\int_{a}^{+\infty} \frac{\ln(t)}{t^{x}} dt$. On pose $\begin{cases} u(t) = \ln(t) \\ v'(t) = t^{-x} \end{cases}$, avec $\begin{cases} u'(t) = \frac{1}{t} \\ v(t) = \frac{t^{1-x}}{1-x} \end{cases}$.

On constate que $u(t)v(t) = \frac{1}{1-r} \frac{\ln(t)}{t^{x-1}} \xrightarrow[t \to +\infty]{} 0$ (et que $u(t)v(t) = \frac{1}{1-r} \frac{\ln(t)}{t^{x-1}} \xrightarrow[t \to a]{} \frac{1}{1-r} \frac{\ln(a)}{a^{x-1}}$

Donc par intégration par parties : $\int_{-\infty}^{+\infty} \frac{\ln(t)}{t^x} dt = \frac{1}{x-1} \frac{\ln(a)}{a^{x-1}} + \frac{1}{x-1} \int_{-\infty}^{+\infty} t^{-x} dt$.

Donc
$$\int_{a}^{+\infty} \frac{\ln(t)}{t^{x}} dt = \frac{1}{x-1} \frac{\ln(a)}{a^{x-1}} + \frac{1}{(x-1)^{2}} \frac{1}{a^{x-1}}$$
. On a donc bien
$$\int_{a}^{+\infty} \frac{\ln(t)}{t^{x}} dt = \frac{a^{1-x} \left(1 + (x-1) \ln a\right)}{(x-1)^{2}}$$

b) On effectue une comparaison série-intégrale. On pose $f(t) = \frac{\ln(t)}{t^x}$ pour $t \in [3, +\infty[$.

Alors
$$f'(t) = \frac{\frac{1}{t}(t^x) - xt^{x-1}\ln(t)}{t^{2x}} = \frac{1}{t^{x+1}}(1 - x\ln(t)) \le 0 \text{ car } x\ln(t) \ge x\ln(e) \ge 1.$$

Donc f est décroissante sur $[3,+\infty[$.

On fixe $N \ge 4$. Pour $4 \le n \le N$, il vient pour $k \in [n, N]$: $\int_{1}^{k+1} f(t) dt \le f(k) \le \int_{1}^{k} f(t) dt$.

Donc en sommant $\int_{-\infty}^{N+1} f(t) dt \le \sum_{k=1}^{N} f(k) \le \int_{-\infty}^{N} f(t) dt$ (1).

Or f est continue sur $[3,+\infty[$ et si $y \in]1,x[$, $t^y \frac{\ln(t)}{t^x} = \frac{\ln(t)}{t^{x-y}} \xrightarrow[t \to +\infty]{} 0$, donc $f(t) = o(\frac{1}{t^y})$, donc f est intégrable en $+\infty$.

Dès lors, en passant l'inégalité (1) quand N tend vers l'infini, il vient $\int_{-\tau}^{+\infty} \frac{\ln(t)}{t^x} dt \le r_n \le \int_{-\tau}^{+\infty} \frac{\ln(t)}{t^x} dt$

c) On sait avec 2a) que
$$\int_{n}^{+\infty} \frac{\ln(t)}{t^{x}} dt = \frac{n^{1-x} \left(1 + (x-1) \ln n\right)}{(x-1)^{2}} \sum_{n \to +\infty}^{\infty} \frac{n^{1-x} \ln n}{(x-1)}$$

De même,
$$\int_{n-1}^{+\infty} \frac{\ln(t)}{t^x} dt = \frac{(n-1)^{1-x} \left(1 + (x-1) \ln(n-1)\right)}{(x-1)^2} \underset{n \to +\infty}{\sim} \frac{n^{1-x} \ln(n-1)}{(x-1)}.$$

Comme
$$\ln(n-1) = \ln\left(n(1-\frac{1}{n})\right) = \ln(n) + o\left(\ln(n)\right) \sim \ln(n)$$
, $\int_{n-1}^{+\infty} \frac{\ln(t)}{t^x} dt \sim \frac{n^{1-x} \ln(n)}{(x-1)}$. Par théorème d'encadrement sur les équivalents, $n \sim \frac{\ln(n)}{(x-1)n^{x-1}}$

d) Avec ce dernier équivalent, comme $\frac{\ln(n)}{(x-1)n^{x-1}}$ est de signe fixe, et avec 1), $\sum_{n>1} r_n$ converge si et

Donc
$$\sum_{n\geq 1} \left(\sum_{k=n}^{+\infty} \frac{\ln(k)}{k^x} \right)$$
 est convergente si et seulement si $x>2$

Partie C: Restes de séries alternées

1) Tout d'abord, comme f est décroissante sur $[0,+\infty[$, il vient pour $t \ge 0: f(t)-f(t+1) \ge 0$. Comme f est positive strictement, on a bien $0 \le \frac{f(t)-f(t+1)}{f(t)}$.

On applique **le théorème des accroissements finis** sur [t,t+1] (f est bien continue sur [t,t+1], dérivable sur [t,t+1], à valeurs réelles). Il existe donc $c \in [t,t+1]$ tel que $\frac{f(t)-f(t+1)}{t-(t+1)} = f'(c)$.

Comme f est convexe, f' est croissante, donc $f'(c) \ge f'(t)$ et $f(t) - f(t+1) = -f'(c) \le -f'(t)$.

Comme f est positive strictement, on a bien $0 \le \frac{f(t) - f(t+1)}{f(t)} \le -\frac{f'(t)}{f(t)}$

2)

- a) On utilise le **théorème spécial sur les séries alternées**. La série $\sum_{n\geq 0} U_n$ est alternée puisque f est positive. De plus $(|U_n|) = (f(n))$ est décroissante et de limite nulle. Donc $\sum_{n\geq 0} U_n$ converge.
- b) Soit $n \in \mathbb{N}$. Alors $r_n = \sum_{k=n}^{+\infty} U_k = \sum_{k=n}^{+\infty} (-1)^k f(k)$. On effectue un changement d'indice en posant p = k n. Il vient $r_n = \sum_{p=0}^{+\infty} (-1)^{p+n} f(p+n) = (-1)^n \sum_{p=0}^{+\infty} (-1)^p f(p+n)$.

Donc
$$\left| r_n \right| = \sum_{p=0}^{+\infty} (-1)^p f(n+p)$$

On fixe $n \in \mathbb{N}$ et il vient :

$$\left|r_{n}\right| - \left|r_{n+1}\right| = \sum_{p=0}^{+\infty} (-1)^{p} f(n+p) - \sum_{p=0}^{+\infty} (-1)^{p} f(n+p+1) = \sum_{p=1}^{+\infty} (-1)^{p-1} \left(f(n+p-1) - f(n+p)\right).$$

On pose alors $V_p = f(n+p-1) - f(n+p)$ pour $p \ge 1$.

On cherche à appliquer le théorème spécial sur les séries alternées.

Comme f est décroissante, on remarque que $V_p \ge 0$. De plus, comme f est de limite nulle en $+\infty$, $V_p \xrightarrow[p \to +\infty]{} 0$. Il reste à prouver que (V_p) est décroissante.

$$V_{p+1} - V_p = 2f(n+p) - (f(n+p-1) + f(n+p+1)).$$

Or **par convexité**, pour
$$a,b \in \mathbb{R}_+$$
, $f\left(\frac{1}{2}a + \frac{1}{2}b\right) = f\left(\frac{1}{2}a + \left(1 - \frac{1}{2}\right)b\right) \le \frac{1}{2}f\left(a\right) + \frac{1}{2}f(b)$.

On l'applique pour a = n + p - 1 et b = n + p + 1.

On obtient $V_{p+1} - V_p \le 0$, donc (V_p) est décroissante.

Donc avec le théorème spécial sur les séries alternées, $|r_n| - |r_{n+1}|$ est du signe de V_1 , donc positif. De plus, $|r_n| - |r_{n+1}| \le |V_1| = f(n) - f(n+1)$.

plus, $|r_n| - |r_{n+1}| \le |V_1| = f(n) - f(n+1)$. On a donc bien $0 \le |r_n| - |r_{n+1}| \le f(n) - f(n+1)$

- On utilise de nouveau le théorème spécial sur les séries alternées. Tout d'abord, pour $n \in \mathbb{N}^*$, $r_n = \sum_{k=1}^{\infty} U_k$ est le reste d'une série alternée : il est donc du signe de $U_n = (-1)^n f(n)$, donc $\sum_{k=1}^{\infty} r_k$ est aussi une série alternée. Comme $\forall n \in \mathbb{N}, 0 \leq \left|r_n\right| - \left|r_{n+1}\right|$, la suite $\left(\left|r_n\right|\right)$ est décroissante et de limite nulle comme reste de série convergente. Donc $\sum_{n\geq 0} r_n$ est convergente.
- d) On suppose que le quotient $\frac{f'(t)}{f(t)}$ tend vers 0 quand le réel t tend vers l'infini. Alors avec (1), par encadrement, $\frac{f(t)-f(t+1)}{f(t)} \xrightarrow[t \to +\infty]{} 0$. Or avec 2b), $0 \le \frac{|r_n|-|r_{n+1}|}{f(n)} \le \frac{f(n)-f(n+1)}{f(n)}$. Donc par encadrement, $|r_n| - |r_{n+1}| = o(f(n))$

De plus, $r_n = \sum_{k=1}^{+\infty} U_k = U_n + r_{n+1}$, donc comme r_n est du signe de $U_n = (-1)^n f(n)$, il vient $r_n = (-1)^n |r_n|$, donc $(-1)^n |r_n| = (-1)^n f(n) + (-1)^{n+1} |r_{n+1}|$, puis $|r_n| = f(n) - |r_{n+1}|$. Donc $2|r_n| = f(n) + |r_n| - |r_{n+1}| = f(n) + o(f(n))$.

Donc
$$2|r_n| \underset{n\to+\infty}{\sim} f(n)$$
, puis $2(-1)^n |r_n| \underset{n\to+\infty}{\sim} (-1)^n f(n)$. On a donc bien $r_n \underset{n\to+\infty}{\sim} \frac{U_n}{2}$

3)

a) On suppose $x \le 0$. Alors $\left| \frac{(-1)^n \ln n}{n^x} \right| = n^{-x} \ln(n) \underset{n \to +\infty}{\longrightarrow} + \infty$, donc $\sum_{n \ge 1} \frac{(-1)^n \ln n}{n^x}$ est grossièrement divergente.

On suppose x > 0. On pose $f(t) = \frac{\ln(t)}{t^x}$ pour $t \in [1, +\infty)$

Alors
$$f'(t) = \frac{\frac{1}{t}(t^x) - xt^{x-1}\ln(t)}{t^{2x}} = \frac{1}{t^{x+1}}(1 - x\ln(t))$$
. Donc $f'(t) \le 0 \Leftrightarrow t \ge e^{1/x}$.

Donc f est décroissante sur $\left[e^{1/x}, +\infty\right]$, à valeurs strictement positives.

De plus,
$$f''(t) = \frac{1}{t^{x+1}} \left(-\frac{x}{t} \right) + \left(1 - x \ln(t) \right) \left(-x - 1 \right) \frac{1}{t^{x+2}} = \frac{1}{t^{x+2}} \left(-x + (x \ln(t) - 1)(x + 1) \right)$$
.

Pour
$$t \ge e^{2/x}$$
, il vient $f''(t) \ge \frac{1}{t^{x+2}} (-x + (x+1)) \ge 0$.

f est convexe sur $\left[e^{2/x}, +\infty\right]$, décroissante, à valeurs strictement positives, de limite nulle en $+\infty$.

On note
$$N = \lfloor e^{2/x} \rfloor + 1$$

Donc avec les résultats de C2), comme la nature d'une série ne dépend pas des premiers termes, on conclut que $\sum_{n\geq 1} \frac{(-1)^n \ln n}{n^x}$ a même nature que $\sum_{n\geq N} \frac{(-1)^n \ln n}{n^x}$ et est convergente. Donc $\sum_{n\geq 1} \frac{(-1)^n \ln n}{n^x}$ est convergente si et seulement si x>0.

Donc
$$\sum_{n \ge 1} \frac{(-1)^n \ln n}{n^x}$$
 est convergente si et seulement si $x > 0$

b) On utilise C2d):
$$\frac{f'(t)}{f(t)} = \frac{1}{t^x \ln(t)} \left(1 - x \ln(t) \right) = \frac{1}{t^x} \left(\frac{1}{\ln(t)} - x \right) \xrightarrow[t \to +\infty]{} 0.$$

Donc pour
$$n \ge N$$
, $r_n = \sum_{k=n}^{+\infty} \frac{(-1)^k \ln k}{k^x} \sum_{n \to +\infty} \frac{U_n}{2}$.
Donc
$$\sum_{k=n}^{+\infty} \frac{(-1)^k \ln k}{k^x} \sum_{n \to +\infty} \frac{(-1)^n \ln(n)}{2n^x}$$

4)

a) On pose
$$U_n = \frac{(-1)^n}{n + (-1)^n}$$
 pour $n \ge 2$. Alors

$$U_n = \frac{(-1)^n}{n} \frac{1}{\left(1 + \frac{(-1)^n}{n}\right)} = \frac{(-1)^n}{n} \left(1 + O\left(\frac{1}{n}\right)\right) = \frac{(-1)^n}{n} + O\left(\frac{1}{n^2}\right).$$

Or $\sum_{n\geq 1} \frac{(-1)^n}{n}$ converge avec le théorème sur les séries alternées, et si $W_n = O\left(\frac{1}{n^2}\right)$, alors $\sum_{n\geq 1} W_n$

converge absolument, donc converge. Donc $\sum_{n\geq 2} \frac{(-1)^n}{n+(-1)^n}$ est convergente.

b) On écrit
$$U_n = \frac{(-1)^n}{n + (-1)^n} = \frac{(-1)^n}{n} + \frac{(-1)^n}{n + (-1)^n} - \frac{(-1)^n}{n}$$

On note
$$V_n = \frac{(-1)^n}{n}$$
 et $W_n = \frac{(-1)^n}{n + (-1)^n} - \frac{(-1)^n}{n} = -\frac{1}{(n + (-1)^n)n}$

Si on note pour
$$t > 0$$
: $f(t) = \frac{1}{t}$, il vient $f'(t) = -\frac{1}{t^2}$, $f''(t) = 2\frac{1}{t^3} \ge 0$

f est strictement positive, convexe, de limite nulle, décroissante et $\frac{f'(t)}{f(t)} \xrightarrow[t \to +\infty]{} 0$.

Donc avec C2d),
$$\sum_{k=n}^{+\infty} V_k \underset{n \to +\infty}{\sim} \frac{(-1)^n}{2n}$$
, donc $\sum_{k=n}^{+\infty} V_k \underset{n \to +\infty}{=} \frac{(-1)^n}{2n} + o\left(\frac{1}{n}\right)$

De plus, pour
$$n \ge 2$$
, $\frac{1}{(n+1)n} \le -W_n \le \frac{1}{(n-1)n}$, donc $\frac{1}{n} - \frac{1}{(n+1)} \le -W_n \le \frac{1}{n-1} - \frac{1}{n}$.

Donc par somme télescopique (ces séries convergent) : $\frac{1}{n} \le -\sum_{k=n}^{+\infty} W_k \le \frac{1}{n-1}$.

Par théorème d'encadrement sur les équivalents, $-\sum_{k=n}^{+\infty} W_k \underset{n \to +\infty}{\sim} \frac{1}{n}$ et $\sum_{k=n}^{+\infty} W_k \underset{n \to +\infty}{=} -\frac{1}{n} + o\left(\frac{1}{n}\right)$.

Donc en sommant,
$$\sum_{k=n}^{+\infty} U_k = \frac{-2 + (-1)^n}{2n} + o\left(\frac{1}{n}\right)$$
 et $\sum_{k=n}^{+\infty} U_k = \frac{-2 + (-1)^n}{2n}$

Or
$$\frac{-2+(-1)^n}{2n}$$
 est de signe fixe (négatif), $\sum_{n\geq 1}\frac{1}{n}$ diverge et $\sum_{n\geq 1}\frac{(-1)^n}{2n}$ converge avec le théorème sur les

séries alternées. Donc
$$\sum_{n\geq 1} \frac{-2+(-1)^n}{2n}$$
 diverge et la série de terme général $\sum_{k=n}^{+\infty} \frac{(-1)^k}{k+(-1)^k}$ est divergente