DM 3 pour le jeudi 14 Novembre

Problème 1 : Soit $(a_n)_{n\geq 1}$ une suite de réels strictement positifs.

On lui associe la suite (p_n) définie par $p_n = \prod_{k=1}^n a_k$.

On dit que le produit $\prod_{k\geq 1} a_k$ converge si et seulement si la suite (p_n) converge vers une limite finie **non nulle**.

Dans le contraire, on dit que $\prod_{k>1} a_k$ diverge.

En cas de convergence de la suite (p_n) , sa limite est notée $\prod_{k=1}^{+\infty} a_k$ et s'appelle valeur du produit $\prod_{k>1} a_k$.

- 1) Etudier la convergence du produit $\prod_{p\geq 1} \left(1 \frac{1}{p+1}\right)$.
- 2) Montrer que le produit $\prod_{p\geq 1} \left(1 \frac{1}{(p+1)^2}\right)$ est convergent et trouver sa valeur.
- 3) En considérant le produit $\frac{p_n}{p_{n-1}}$, montrer que si le produit $\prod_{k\geq 1} a_k$ converge, alors la suite (a_n) converge vers 1. La réciproque est-elle vraie ?
- 4) Pour $n \in \mathbb{N}^*$, exprimer $p_n = \prod_{k=1}^n (1 \frac{1}{4k^2})$ à l'aide de factorielles et de puissances de 2. En utilisant la formule de Stirling, montrer que le produit $\prod_{k \ge 1} \left(1 \frac{1}{4k^2}\right)$ est convergent et déterminer sa valeur.
- 5) Soit $(a_n)_{n\geq 1}$ une suite de réels strictement positifs.
 - a) Montrer que le produit $\prod_{k\geq 1} a_k$ est convergent si et seulement si la série $\sum \ln{(a_k)}$ converge.
 - b) Etudier la convergence du produit infini $\prod_{p\geq 1} \sqrt[p]{p}$.

Dans toute la suite, on considère une suite (U_n) de réels strictement supérieurs à -1.

On s'intéresse aux relations entre les propositions suivantes :

- (P1) : le produit infini $\prod_{n>1} (1+U_n)$ converge.
- (P2): la série $\sum_{n>1} U_n$ converge.

6)

- a) On suppose dans cette question que $\forall n \in \mathbb{N}^*, U_n > 0$. Montrer que (P1) et (P2) sont équivalentes.
- b) On suppose dans cette question que $\forall n \in \mathbb{N}^*, U_n = \frac{(-1)^n}{\sqrt{n}} + \frac{1}{2n}$. La série $\sum_{n \ge 1} U_n$ est-elle

convergente ? Et le produit $\prod_{n\geq 1}(1+U_n)$? Que peut-on en conclure ?

- 7) Toute cette question est facultative. On suppose dans cette question que la série $\sum U_n$ converge.
 - a) Montrer que le produit $\prod_{n\geq 1} (1+U_n)$ converge si et seulement si la série $\sum U_n^2$ converge. Si la série $\sum U_n^2$ diverge, quelle est la limite de la suite de terme général $P_n = \prod_{i=1}^n (1+U_k)$?
 - b) En déduire que si la série $\sum U_n$ est absolument convergente, alors le produit $\prod_{n\geq 1} (1+U_n)$ converge.
 - c) Donner un exemple de suite (U_n) de réels strictement supérieurs à -1 telle que la série $\sum U_n$ converge, mais le produit infini $\prod_{n\geq 1} (1+U_n)$ diverge.

Problème 2 (BECEAS 21): pour tout suite réelle (U_n) , on notera $\sum_{n\geq 0} U_n$ la série de terme général U_n et $\sum_{n=0}^{+\infty} U_n$ la somme de cette série lorsqu'elle converge.

Partie A: Exemples de calcul explicite de reste.

- 1) Rappeler pourquoi, lorsque la série $\sum_{n\geq 0} U_n$ est convergente, la suite de terme général $\sum_{k=n}^{+\infty} U_k$ est convergente. Quelle est alors sa limite ?
- 2) Dans cette question, x désigne un nombre réel non nul, de signe quelconque.
 - a) Démontrer que la série $\sum_{n\geq 0} \frac{x^{2n}}{(2n)!}$ est convergente. Démontrer que $\sum_{n=0}^{+\infty} \frac{x^{2n}}{(2n)!} = ch(x)$.
 - b) Établir, pour tout nombre entier strictement positif n, l'égalité $\sum_{k=n}^{+\infty} \frac{x^{2k}}{(2k)!} = \int_{0}^{x} \frac{(x-t)^{2n-2}}{(2n-2)!} sh(t) dt$.
- 3) a) Démontrer que la série de terme général $a_n = \arctan\left(\frac{2n}{n^4 + n^2 + 2}\right)$ est convergente.
 - b) Trouver un couple (P,Q) de polynômes de $\mathbb{R}[X]$ qui vérifient : $\begin{cases} P(X) Q(X) = 2X \\ P(X)Q(X) = X^4 + X^2 + 1 \end{cases}$
 - Établir que, pour tout couple (x, y) de nombres réels positifs ou nuls, on a : $\arctan\left(\frac{x-y}{1+xy}\right) = \arctan(x) \arctan(y)$.
 - d) Déduire des deux questions précédentes que, pour tout entier naturel n, on a : $\sum_{k=0}^{+\infty} a_k = \frac{\pi}{2} \arctan(n^2 n + 1)$
 - e) La série $\sum_{n>0} \left(\sum_{k=n}^{+\infty} a_k \right)$ est-elle convergente ?

Partie B: Exemples d'évaluation asymptotique du reste

1) Soit $x \in \mathbb{R}$. Démontrer que la série $\sum_{n\geq 1} \frac{\ln(n)}{n^x}$ est convergente si et seulement si, x>1.

- 2) Dans cette question on suppose que x > 1 et, pour tout entier n strictement positif, on note $r_n = \sum_{k=n}^{+\infty} \frac{\ln(k)}{k^x}$.
 - a) Pour tout réel a strictement positif, justifier l'égalité $\int_{a}^{+\infty} \frac{\ln(t)}{t^{x}} dt = \frac{a^{1-x} \left(1 + (x-1) \ln a\right)}{(x-1)^{2}}$
 - b) Établir, pour tout entier n supérieur ou égal à 4, la double inégalité $\int_{n}^{+\infty} \frac{\ln(t)}{t^{x}} dt \le r_{n} \le \int_{n-1}^{+\infty} \frac{\ln(t)}{t^{x}} dt$
 - c) En déduire que r_n est équivalent à $\frac{\ln(n)}{(x-1)n^{x-1}}$ quand n tend vers l'infini.
 - d) Pour quelles valeurs de la série $\sum_{n\geq 1} \left(\sum_{k=n}^{+\infty} \frac{\ln(k)}{k^x}\right)$ est-elle convergente ?

Partie C: Restes de séries alternées. Toute cette partie est facultative.

Dans cette partie, f désigne une fonction dérivable sur $[0,+\infty[$, décroissante et convexe, à valeurs strictement positives et de limite nulle en $+\infty$.

- 1) Établir, pour tout réel positif ou nul t la double inégalité : $0 \le \frac{f(t) f(t+1)}{f(t)} \le -\frac{f'(t)}{f(t)}$.
- 2) Pour tout entier positif ou nul n, on pose $U_n = (-1)^n f(n)$.
 - a) Justifier la convergence de la série $\sum_{n>0} U_n$.
 - b) Pour tout entier positif ou nul n, on pose $r_n = \sum_{k=n}^{+\infty} U_k$. Démontrer que, pour tout entier positif ou nul n, on a:
 - $|r_n| = \sum_{n=0}^{+\infty} (-1)^p f(n+p)$
 - $0 \le |r_n| |r_{n+1}| \le f(n) f(n+1)$
 - c) Montrer que la série $\sum_{n\geq 0} r_n$ est convergente.
 - d) Démontrer que, si le quotient $\frac{f'(t)}{f(t)}$ tend vers 0 quand le réel t tend vers l'infini alors $r_n \underset{n \to +\infty}{\sim} \frac{U_n}{2}$.

3)

- a) Pour quelles valeurs du réel x la série $\sum_{n\geq 1} \frac{(-1)^n \ln n}{n^x}$ est-elle convergente ?
- b) Pour ces valeurs, déduire des résultats précédents un équivalent de $\sum_{k=n}^{+\infty} \frac{(-1)^k \ln k}{k^x}$ quand n tend vers l'infini.

4)

- a) Démontrer que la série $\sum_{n>2} \frac{(-1)^n}{n+(-1)^n}$ est convergente.
- b) La série de terme général $\sum_{k=n}^{+\infty} \frac{(-1)^k}{k+(-1)^k}$ est-elle convergente ?