7-Séries entières

A) Rayon et domaine de convergence

1) Séries entières

Définition : soit $R \in \mathbb{R}_+^*$. $D(0,R) = \{z \in \mathbb{C}, |z| < R\}$ est le disque ouvert de centre O et de rayon R. $\overline{D}(0,R) = \{z \in \mathbb{C}, |z| \le R\}$ est le disque fermé de centre O et de rayon R. $C(0,R) = \{z \in \mathbb{C}, |z| = R\}$ est le cercle de centre O et de rayon R.

Définition : Soit $(a_n) \in \mathbb{C}^{\mathbb{N}}$. La série entière $\sum_{n \in \mathbb{N}} a_n z^n$ est la série de fonctions de la variable complexe $\sum_{n \in \mathbb{N}} f_n(z)$, avec pour tout $z \in \mathbb{C}$: $f_0(z) = a_0$ et $\forall n \in \mathbb{N}^*$, $f_n(z) = a_n z^n$.

Le domaine de convergence de la série entière est $D = \left\{ z \in \mathbb{C}, \sum_{n \in \mathbb{N}} a_n z^n \text{ converge} \right\}.$

Remarques:

- pour $(a_n) \in \mathbb{R}^{\mathbb{N}}$, on définit de la même manière la série entière $\sum_{n \in \mathbb{N}} a_n x^n$ de la variable réelle x.
- On note $\sum a_n z^{2n}$ la série entière $\sum b_n z^n$ telle que $\forall n \in \mathbb{N}, b_{2n} = a_n, b_{2n+1} = 0$.

Exemples : déterminer le domaine de convergence des séries entières suivantes :

- $1) \quad \sum_{n\in\mathbb{N}} z^n$
- $2) \quad \sum_{n\in\mathbb{N}} \frac{z^n}{n^2}$
- $3) \quad \sum_{n\in\mathbb{N}} \frac{z^n}{n!}$
- 4) $\sum_{n\in\mathbb{N}}n!z^n$

2) Rayon de convergence.

Définition : Soit $A \subset \mathbb{R}$. Si A n'est pas majorée, on pose $\sup(A) = +\infty$. La borne supérieure de A est alors le plus petit majorant de A dans $\mathbb{R} \cup \{+\infty\}$.

Lemme d'Abel (*) : Soit $\sum_{n\in\mathbb{N}} a_n z^n$ une série entière. Soit $z_0 \in \mathbb{C}^*$. On suppose que $(a_n z_0^n)$ est bornée. Soit $z \in \mathbb{C}$ tel que $|z| < |z_0|$. Alors la série $\sum_{n\in\mathbb{N}} a_n z^n$ est absolument convergente.

1

Preuve:
$$\left|a_n z^n\right| = \left|a_n z_0^n\right| \left|\frac{z}{z_0}\right|^n$$

Définition (*): soit $\sum_{n\in\mathbb{N}} a_n z^n$ une série entière, avec $(a_n) \in \mathbb{C}^{\mathbb{N}}$.

- Le rayon de convergence R de cette série entière, noté $R\left(\sum_{n\in\mathbb{N}}a_nz^n\right)$ est la borne supérieure de $A=\left\{r\in\mathbb{R}_+,(a_nr^n)\text{ est bornée}\right\}$. On a $R\in\mathbb{R}_+\cup\{+\infty\}$.
- Le disque ouvert de convergence est $\{z \in \mathbb{C}, |z| < R\}$.
- Le cercle d'incertitude est $C = \{z \in \mathbb{C}, |z| = R\}$ (lorsque $R \in \mathbb{R}_+$).

Proposition (*): soit $\sum_{n\in\mathbb{N}} a_n z^n$ une série entière de rayon $R \in \mathbb{R}_+ \cup \{+\infty\}$. Soit $z \in \mathbb{C}$.

- Si |z| < R, $\sum_{n \in \mathbb{N}} a_n z^n$ est absolument convergente et $a_n z^n \xrightarrow[n \to +\infty]{} 0$
- Si |z| > R, alors $(a_n z^n)$ n'est pas bornée. En particulier, $\sum_{n \in \mathbb{N}} a_n z^n$ est grossièrement divergente.

Preuve : Si |z| < R, |z| n'est pas un majorant de $A = \{r \in \mathbb{R}_+, (a_n r^n) \text{ est bornée}\}$. Donc on peut trouver $|z| < r \le R$, $(a_n r^n)$ est bornée et on conclut avec le lemme d'Abel.

Corollaires (*) : soit $\sum_{n\in\mathbb{N}} a_n z^n$ une série entière de rayon $R \in \mathbb{R}_+ \cup \{+\infty\}$. Soit $r \in \mathbb{R}_+$.

- Si $(a_n r^n)$ est bornée, alors $R \ge r$.
- Si $(a_n r^n)$ ne tend pas vers 0, alors $R \le r$.
- Si on trouve $r_0 \in \mathbb{R}_+$ tel que $(r < r_0 \Rightarrow (a_n r^n)$ est bornée), et $(r > r_0 \Rightarrow (a_n r^n)$ ne tend pas vers 0), alors $R = r_0$.

Preuve : c'est la contraposée du résultat précédent (si $(a_n r^n)$ ne tend pas vers 0, alors $\sum_{n \in \mathbb{N}} a_n z^n$ n'est pas absolument convergente). Pour la dernière, supposer $R > r_0$ ou $R < r_0$ et aboutir à une absurdité.

Très utile en pratique pour déterminer le rayon de convergence.

Propriété : soient $\sum_{n\in\mathbb{N}}a_nz^n$ et $\sum_{n\in\mathbb{N}}b_nz^n$ deux séries entières de rayons de convergence respectifs R_a et R_b . Si $\sum_{n\in\mathbb{N}}a_nz^n$ et $\sum_{n\in\mathbb{N}}b_nz^n$ ont même domaine de convergence, alors $R_a=R_b$.

Preuve: regarder $(b_n r^n)$ pour $r < R_a$ et $r > R_a$ et conclure $R_b = R_a$.

Remarques:

- R = 0 lorsque $\sum_{n=1}^{\infty} a_n z^n$ n'est jamais convergente, sauf si z = 0.
- $R = +\infty$ si et seulement si $\sum_{n \in \mathbb{N}} a_n z^n$ est absolument convergente pour tout complexe z.
- Ce qui se passe sur le cercle d'incertitude (pour |z| = R) est subtil. Tout peut arriver.

Exemples: reprendre les exemples précédents. En plus:

- 1) Rayon de convergence de $\sum_{n=1}^{\infty} 4^n z^n$
- 2) Rayon de convergence de $\sum_{n \in \mathbb{N}} (1 + \cos^2 n) z^n$

Définition : Soit $\sum_{n\in\mathbb{N}} a_n z^n$ une série entière de rayon $R \in \mathbb{R}^*_+ \cup \{+\infty\}$. On suppose $(a_n) \in \mathbb{R}^\mathbb{N}$

Alors la fonction d'une variable réelle f donnée par $f(t) = \sum_{n=0}^{+\infty} a_n t^n$ admet un domaine de définition D tel que $]-R,R[\subset D \subset [-R,R]$.

]-R,R[est alors l'intervalle ouvert de convergence.

3) Outils pour calculer le rayon de convergence.

Proposition (*): soient $\sum_{n\in\mathbb{N}} a_n z^n$ et $\sum_{n\in\mathbb{N}} b_n z^n$ deux séries entières de rayons respectifs R_a et R_b .

- Si $a_n = O(b_n)$, alors $R_a \ge R_b$
- Si $a_n = o(b_n)$, alors $R_a \ge R_b$
- Si $a_n \sim b_n$, alors $R_a = R_b$

Preuve: si $a_n = O(b_n)$, alors soit $r < R_b$. On a $|a_n| r^n = O(|b_n| r^n)$ donc $r \le R_a$. Puis on fait tendre r vers R_b donc $R_a \ge R_b$

Si
$$a_n \sim b_n$$
, alors $a_n = O(b_n)$ et $b_n = O(a_n)$

Exemple : rayon de convergence de $\sum \arctan\left(\frac{1}{2^n}\right)z^n$.

Rappel : règle de d'Alembert pour les séries : soit (U_n) une suite de réels strictement positifs tels que $\underbrace{U_{n+1}}_{D_n} \underset{n \to +\infty}{\longrightarrow} a \in \mathbb{R}_+ \cup \{+\infty\}$.

3

- Si $0 \le a < 1$, alors la série $\sum U_n$ converge.
- Si $a \in]1,+\infty]$, alors $\sum U_n$ diverge grossièrement.

Règle de d'Alembert pour les séries entières (*) : soit $\sum_{n\in\mathbb{N}} a_n z^n$ une série entière. On suppose

que
$$\forall n \in \mathbb{N}, a_n \neq 0$$
. On suppose aussi que $\left| \frac{a_{n+1}}{a_n} \right| \underset{n \to +\infty}{\longrightarrow} b \in \mathbb{R}$.

Alors si
$$b \in \mathbb{R}_+^*$$
, $R\left(\sum_{n \in \mathbb{N}} a_n z^n\right) = \frac{1}{b}$ et si $b = 0$, $R\left(\sum_{n \in \mathbb{N}} a_n z^n\right) = +\infty$

Preuve: à faire.

Exemple (*): trouver le rayon de convergence de $\sum_{n=0}^{\infty} z^n$.

Soit
$$U_n = {2n \choose n} r^n$$
, avec $r > 0$. Alors $\frac{U_{n+1}}{U_n} \xrightarrow[n \to +\infty]{} 4r$. Puis $R = \frac{1}{4}$.

Propriété : Soit $\alpha \in \mathbb{R}$. Alors le rayon de convergence de $\sum_{n \in \mathbb{N}} n^{\alpha} z^n$ est égal à 1.

Preuve: avec d'Alembert.

Remarques:

- Il suffit d'avoir $a_n \neq 0$ à partir d'un certain rang N.
- La règle de d'Alembert pour les séries entières ne fonctionne pas pour les séries lacunaires de la forme $\sum a_n z^{2n}$ ou $\sum a_n z^{2n+1}$, car de nombreux termes de la suite (a_n) sont nuls. On peut utiliser la règle de d'Alembert pour les séries numériques.

Exemple : rayon de convergence de $\sum \arctan\left(\frac{1}{2^n}\right)z^{2n}$.

4) Opérations et rayon de convergence.

Propriété : soient $\sum_{n\in\mathbb{N}} a_n z^n$ et $\sum_{n\in\mathbb{N}} b_n z^n$ deux séries entières de rayons respectifs R_a et R_b .

Soit R le rayon de convergence de $\sum_{n\in\mathbb{N}} (a_n + b_n) z^n$. Alors $R \ge \min(R_a, R_b)$.

Preuve: si $0 \le r < \min(R_a, R_b)$, alors $(a_n + b_n)r^n$ est bornée, donc $r \le R$.

Rappel: produit de Cauchy de deux séries numériques: soit $\sum U_n$ et $\sum V_n$ deux séries à termes complexes absolument convergentes. Le produit de Cauchy de ces deux séries est la série $\sum W_n$, avec $W_n = \sum_{p=0}^n U_p V_{n-p} = \sum_{p=0}^n U_p V_q$.

Alors la série $\sum W_n$ est absolument convergente et on a $\sum_{n=0}^{+\infty} W_n = \left(\sum_{p=0}^{+\infty} U_p\right) \left(\sum_{q=0}^{+\infty} V_q\right)$.

Proposition (*,PV) : produit de Cauchy de deux séries entières.

Soient $\sum_{n\in\mathbb{N}} a_n z^n$ et $\sum_{n\in\mathbb{N}} b_n z^n$ deux séries entières de rayons respectifs R_a et R_b .

On note R le rayon de convergence de la série entière $\sum_{n\in\mathbb{N}} c_n z^n$, avec $\forall n\in\mathbb{N}, c_n = \sum_{p=0}^n a_p b_{n-p}$

Alors
$$R \ge \min(R_a, R_b)$$
. De plus, si $|z| < \min(R_a, R_b)$, alors $\sum_{n=0}^{+\infty} c_n z^n = \left(\sum_{p=0}^{+\infty} a_p z^p\right) \left(\sum_{q=0}^{+\infty} b_q z^q\right)$

Preuve : c'est le produit de Cauchy des séries numériques avec $U_p = a_p z^p$ et $V_q = b_q z^q$. On l'applique pour $U_p = a_p z^p$ et $V_q = b_q z^q$ pour $|z| \le r < \min(R_a, R_b)$, donc $\sum_{n \in \mathbb{N}} W_n z^n$ converge par produit de Cauchy sur les séries numériques.

Exemple : soit
$$z \in \mathbb{C}$$
 tel que $|z| < 1$. Montrer que $\frac{1}{(1-z)^2} = \sum_{n=0}^{+\infty} (n+1)z^n$

Remarque : si on veut faire le produit de Cauchy de deux séries entières, toujours écrire ces séries sous la forme $\sum_{p=0}^{+\infty} a_p z^p$ (sinon la gestion des indices est trop compliquée)

5) Méthodes et exemples de recherche de rayon de convergence.

Méthode (*): pour déterminer le rayon de convergence R d'une série entière $\sum_{n\in\mathbb{N}} a_n z^n$, on peut :

- Utiliser d'Alembert lorsque $\exists N \in \mathbb{N}, \forall n \geq N, a_n \neq 0$.
- Prendre r > 0 et étudier quand la suite $(a_n r^n)$ est bornée ou tend vers 0. Si on trouve $r_0 \in \mathbb{R}_+$ tel que $(r < r_0 \Rightarrow (a_n r^n)$ est bornée), et $(r > r_0 \Rightarrow (a_n r^n)$ ne tend pas vers 0), alors $R = r_0$.

5

Faire un dessin aide à réfléchir.

• Utiliser $a_n = O(b_n)$ ou $a_n \underset{n \to +\infty}{\sim} b_n$ lorsqu'on connait $R\left(\sum_{n \in \mathbb{N}} b_n z^n\right)$.

Exemples : déterminer le rayon de convergence des séries entières suivantes :

$$1) \quad \sum \frac{n^2 + \ln(n)}{3^n} z^n$$

$$2) \quad \sum e^{\cos(n)} z^n \quad (R=1)$$

3)
$$\sum \frac{(2n)!}{n!n^n} z^n (R = \frac{e}{2})$$

B) Régularité de la somme d'une série entière

1) Continuité.

Proposition (*): Soit $\sum_{n\in\mathbb{N}} a_n t^n$ une série entière de la variable réelle de rayon de convergence $R\in\mathbb{R}^*_+\cup\{+\infty\}$. Alors $\sum_{n\in\mathbb{N}} a_n t^n$ converge normalement sur tout segment de]-R,R[.

Preuve: soit $[a,b] \subset]-R,R[$. Soit $r = \max(|a|,|b|) < R$. $\sum_{n \in \mathbb{N}} a_n r^n$ converge absolument donc on a convergence normale sur [-r,r] donc sur [a,b].

Remarque : la série $\sum_{n\in\mathbb{N}} a_n t^n$ ne converge pas toujours normalement sur]-R,R[. Il suffit pour cela de prendre $\sum_{n\in\mathbb{N}} t^n$.

Proposition (*): Soit $\sum_{n\in\mathbb{N}} a_n t^n$ une série entière de la variable réelle de rayon de convergence

$$R \in \mathbb{R}^*_+ \cup \{+\infty\}$$
. Pour $t \in]-R, R[$, on pose $f(t) = \sum_{n=0}^{+\infty} a_n t^n$.

Alors f est continue sur]-R,R[.

Preuve : il y a CVU sur tout segment de la série de fonctions.

Propriété admise : soit $\sum_{n\in\mathbb{N}} a_n z^n$ une série entière de la variable complexe de rayon de convergence $R\in\mathbb{R}^*_+\cup\{+\infty\}$. Pour $z\in D(0,R)$, on pose $f(z)=\sum_{n=0}^{+\infty}a_nz^n$. Alors f est continue sur D(0,R) (ainsi, si $z_0\in D(0,R)$, alors $f(z)\underset{z\to z_0}{\to} f(z_0)$).

2) Intégration et dérivation terme à terme.

Proposition (*): les séries entières $\sum_{n\in\mathbb{N}} a_n z^n$ et $\sum_{n\in\mathbb{N}} n a_n z^n$ ont même rayon de convergence.

Preuve : notons R_1 et R_2 les deux rayons de convergence.

On montre que si $r < R_1, na_n r^n \to 0$, donc est bornée, et si $r > R_1, na_n r^n$ ne tend pas vers 0.

Si
$$r < r' < R_1, na_n r^n = a_n (r')^n n \left(\frac{r}{r'}\right)^n \rightarrow 0$$
.

Si $r > R_1$, on suppose par l'absurde que $na_n r^n \to 0$. Alors $a_n r^n \to 0$, ce qui est absurde. On a donc bien $R_1 = R_2$.

Corollaire: les séries $\sum_{n \in \mathbb{N}} a_n z^n$, $\sum_{n \in \mathbb{N}^*} n a_n z^{n-1}$ et $\sum_{n \in \mathbb{N}} \frac{a_n}{n+1} z^{n+1} = \sum_{n \ge 1} \frac{a_{n-1}}{n} z^n$ ont même rayon de convergence: ce dernier est inchangé par dérivation ou intégration terme à terme.

Preuve rapide: $\sum_{n\in\mathbb{N}^*} n \, a_n z^{n-1}$ converge si et seulement si $\sum_{n\in\mathbb{N}} n \, a_n z^n$ converge (séparer le cas z=0). De même, $\sum_{n\in\mathbb{N}} a_n z^n$ converge si et seulement si $\sum_{n\in\mathbb{N}^*} z a_{n-1} z^{n-1}$ converge.

Puis on applique le résultat à $\sum_{n \in \mathbb{N}} \frac{a_n}{n+1} z^{n+1} = \sum_{n \ge 1} \frac{a_{n-1}}{n} z^n$.

Proposition (*): Soit $\sum_{n\in\mathbb{N}} a_n t^n$ une série entière de la variable réelle de rayon de convergence

$$R \in \mathbb{R}^*_+ \cup \{+\infty\}$$
. Pour $t \in]-R, R[$, on pose $f(t) = \sum_{n=0}^{+\infty} a_n t^n$.

Alors f est de classe C^{∞} sur]-R,R[et on peut dériver terme à terme.

On a
$$\forall t \in]-R, R[, \forall k \in \mathbb{N}, f^{(k)}(t) = \sum_{n=k}^{+\infty} a_n \frac{n!}{(n-k)!} t^{n-k} = \sum_{n=0}^{+\infty} a_{n+k} \frac{(n+k)!}{n!} t^n.$$

Preuve : on montre que f est C^1 sur]-R,R[. On sait que $\sum_{n\in\mathbb{N}}a_nz^n$ et $\sum_{n\in\mathbb{N}}n\,a_nz^n$ ont même rayon de convergence.

Soit 0 < r < R. On note $U_n(t) = a_n t^n$ pour $n \in \mathbb{N}$. On a CVN de la série de fonctions $\sum (U_n)^n$ sur tout segment de]-R,R[et CVS de $\sum U_n$ sur]-R,R[.

Par récurrence,
$$f^{(k)}(t) = \sum_{n=0}^{+\infty} (U_n)^{(k)}(t) = \sum_{n=k}^{+\infty} a_n \frac{n!}{(n-k)!} t^{n-k} = \sum_{n=0}^{+\infty} a_{n+k} \frac{(n+k)!}{n!} t^n$$

Exemple (*): Pour $t \in]-1,1[$, on pose $f(t) = \sum_{n=0}^{+\infty} t^n = \frac{1}{1-t}$.

Calculer $f^{(k)}(t)$ de deux manières et en déduire $\frac{1}{(1-t)^{k+1}} = \sum_{n=k}^{+\infty} \binom{n}{k} t^{n-k}$.

$$f^{(k)}(t) = \sum_{n=k}^{+\infty} \frac{n!}{(n-k)!} t^{n-k} \text{ et } f^{(k)}(t) = \frac{k!}{(1-t)^{k+1}}.$$

Proposition (*): Soit $(a_n) \in \mathbb{R}^{\mathbb{N}}$ et $\sum_{n \in \mathbb{N}} a_n t^n$ une série entière de la variable réelle de rayon de convergence $R \in \mathbb{R}^*_+ \cup \{+\infty\}$. Pour $t \in]-R, R[$, on pose $f(t) = \sum_{n=0}^{+\infty} a_n t^n$. Alors la fonction définie par $F(t) = \sum_{n=0}^{+\infty} \frac{a_n}{n+1} t^{n+1} = \sum_{n=1}^{+\infty} \frac{a_{n-1}}{n} t^n$ est une primitive de f sur]-R, R[.

Ainsi, si
$$[c,d] \subset]-R,R[,\int_{c}^{d} \left(\sum_{n=0}^{+\infty} a_n t^n\right) dt = \sum_{n=0}^{+\infty} a_n \int_{c}^{d} t^n dt = F(d)-F(c).$$

Remarque : Attention : ce résultat n'est vrai que pour $[c,d] \subset]-R,R[$ et non sur]-R,R[.

Preuve : on applique le résultat précédent à F . On peut aussi utiliser le théorème d'intégration terme à terme pour les séries de fonctions sur $[c,d] \subset]-R,R[$. Il y a CVN donc CVU.

Exemples (*): à partir de $\forall t \in]-1,1[\frac{1}{1-t} = \sum_{n=0}^{+\infty} t^n]$, on obtient:

- $\forall x \in]-1,1[,\ln(1-x)=-\sum_{n=1}^{+\infty}\frac{x^n}{n}$
- $\forall x \in]-1,1[,\ln(1+x) = -\sum_{n=1}^{+\infty} \frac{(-1)^{n-1}x^n}{n}$
- $\forall x \in]-1,1[,\arctan(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n x^{2n+1}}{2n+1}$

C) <u>Développement en série entière d'une fonction</u>

On note $K = \mathbb{R}$ ou \mathbb{C} .

On prend maintenant une fonction et se demande si elle s'écrit sous forme de série entière.

1) Développement en série entière des fonctions usuelles.

Définition (*): soit r > 0. Une fonction $f: I \to K$ est dite développable en série entière sur $]-r,r[\subset I$ si et seulement si il existe une série entière $\sum_{n\in\mathbb{N}}a_nt^n$ de rayon de convergence $R\geq r$

telle que
$$\forall t \in]-r,r[,f(t)=\sum_{n=0}^{+\infty}a_nt^n$$
.

f est développable en série entière au voisinage de 0 si et seulement si il existe r > 0 tel que f est développable en série entière sur]-r,r[

Propriété : soient f et g deux fonctions développables en séries entières sur]-r,r[avec r>0. Alors f+g et f g sont DSE sur]-r,r[

Preuve : immédiat avec un produit de Cauchy.

Théorème : Formule de Taylor avec reste intégral (*) : soit a et b des réels quelconques d'un intervalle I, et soit f une fonction de classe C^{n+1} sur I à valeurs dans \mathbb{R} . Alors :

$$f(b) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (b-a)^{k} + \int_{a}^{b} \frac{(b-t)^{n}}{n!} f^{(n+1)}(t) dt.$$

En particulier, si $0 \in I$, alors pour tout $x \in I$, $f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k} + \int_{0}^{x} \frac{(x-t)^{n}}{n!} f^{(n+1)}(t) dt$.

Preuve : par récurrence et intégration par parties.