
 1

 11-Espaces vectoriels normés 

 
Dans tout ce chapitre, on pose K   ou  .  
 
A) Structure d’un espace vectoriel normé.  
 

1) Norme dans un espace vectoriel 
 
Définition (*) : soit E un K  espace vectoriel et N une application de E dans  . Alors N est 
une norme sur E si et seulement si :  

 , ( ) 0u E N u    

 , ( ) 0 0Eu E N u u      (séparation) 

 , , ( ) ( )u E N u N u       (homogénéité) 

 , , ( ) ( ) ( )u v E N u v N u N v      (inégalité triangulaire) 
Un espace vectoriel normé est alors un espace vectoriel muni d’une norme.  
 
Propriété (rappel) : soit k  . Soit A  une partie non vide et majorée de  . On note 

 ,kA k x x A  . Alors    sup supkA k A . 

 
Exemples (rappels) :  

 soit ( , , )E  un espace préhilbertien. Alors l’application définie sur E  par ,x x x   

associée à ce produit scalaire est une norme sur E . C’est la norme euclidienne associée.  
 Si I  est un sous-ensemble non vide de  , on note ( , )B I K l’espace vectoriel des 

fonctions bornées sur I à valeurs dans K .  
On définit sur ( , )B I K la norme infinie par 

,
( , ), sup ( )

I
x I

f B I K f f x



   .  

,I
est une norme sur ( , )B I K .  

 
Exemples (*) :  

a) Dans p , soit 1 2( , ,..., ) p
px x x x  . On définit

1
1

p

k
k

x x


 , 2

2
1

,
p

k
k

x x x x


   .  

et  
1
max k

k p
x x

  
 . Ce sont des normes sur n . Regarder ce que cela donne pour 

1 2x e e  .  

b) En particulier, le module (ou la valeur absolue dans  ) est une norme sur K .  

c) Dans  pM  , on définit 
1

1 1

p p

ij
i j

M M
 

  et 
1 ,
max ij

i j p
M M

  
 . Ce sont des normes. 

Calculer la norme de pI pour chacune des deux normes.  

 
Propriété : soit ( , )E  un espace vectoriel normé. Soit ,x y E . Alors : 

 x y x y    

 x y x y    
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Preuve : à expliquer.  
 
Définition : soit ( , )E  un espace vectoriel normé. Soient ,x y E . La distance entre x et y

est alors égale à ( , )d x y x y  .  

 
2) Suite dans un espace vectoriel normé.  

 
Soit ( , )E  un espace vectoriel normé. 

 
Définition :  

 Soit A une partie de E . Alors A est bornée si et seulement s’il existe *M  tel que 

,x A x M   .  

 Soit )( nx une suite d’éléments de E . Alors )( nx est bornée si et seulement s’il existe 
*M  tel que , nn x M   .  

 
Dessin : dans le plan usuel pour la norme euclidienne.  
 
Définition : On considère une suite )( nx d’éléments de E  et a E . On dit que )( nx converge 

vers a  quand n tend vers l’infini et on note n
n

x a

  si et seulement si 0n

n
x a


  ( c’est-

à-dire : 0, , , nN n N x a         ).  

 
Remarques : 

 Il y a unicité de la limite si elle existe.  

 )( nx diverge si et seulement si , 0, , , na E N n N x a           .  

 Dans un espace vectoriel normé, une suite ne peut pas tendre vers   ou  .  
 
Exemples (*) :  

 On prend E  et   (le module). Alors 0n n
n n

x a x a
 
    .  

 On prend  pE M  . On se place dans ( , )E


, avec, pour M E ,  

1 ,
max ij

i j p
M M

  
 . Etudier la convergence de la suite définie par 

1
n pM M I

n
  .  

 On pose  ,E B   . On se place dans l’espace vectoriel normé ( , )E


. Etudier la 

convergence la suite ( )nf  définie par 
2

, ( ) sinn

x
x f x n

n
     
 

 .  

 
Propriétés : On considère une suite )( nx d’éléments de E  qui converge vers a E . Alors ( )nx

est bornée et n
n

x a

 .  

 
Preuve : à expliquer.  
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Propriétés : soit ( ), ( )n nx y  deux suites d’éléments d’un espace vectoriel normé ( , )E .Soit 

, K   . Soit ( )nU une suite d’éléments de K . On suppose n
n

x a
 
 , n

n
y b

 
  et n

n
U c

 


. Alors : 
 n n

n
x y a b   

 
    

 n n
n

U x ca
 
  

 
Preuve : non faite.  
 
Rappel-propriété : soit )( nx une suite d’éléments d’une espace vectoriel normé ( , )E . Une 

suite extraite (ou une sous-suite) de )( nx  est une suite de la forme  ( )nx , où   est une 

application de   dans   strictement croissante.  
Si n

n
x a E


  , alors toute suite extraite de )( nx tend également vers a. 

Ainsi, si deux suites extraites de )( nx tendent vers des limites différentes, alors )( nx n’a pas de 
limite.  
 
Exemple : soit ( )pA M K . On suppose n

n
A B


 . Alors 1n

n
A B


  

 
Propriété : soit )( nx une suite d’éléments d’un espace vectoriel normé ( , )E . On suppose que 

2( )nx  et 2 1( )nx  tendent vers une même limite a E  . Alors n
n

x a
 
  . 

 
3) Equivalence des normes 

 
Définition (*) : Soient 1N  et 2N deux normes sur un espace vectoriel E . On dit que 1N  et 2N

sont équivalentes si et seulement si il existe deux constantes *,a b   telles que 

1 2

2 1

( ) ( )
,

( ) ( )

N x aN x
x E

N x bN x


   

.  

 
Propriétés : Soit E un espace vectoriel et 1N , 2N deux normes équivalentes sur E .  

 Soit A E . A est bornée pour la norme 1N  si et seulement si elle est bornée pour la 

norme 2N . 

 Soit ( )nU  une suite d’éléments de E . Soit a A . Alors ( )nU  converge vers a pour la 

norme 1N  si et seulement si elle converge vers a pour la norme 2N .  

 En particulier, s’il existe une suite ( )nU  qui converge vers a A pour la norme 1N  mais 

ne converge pas vers a pour la norme 2N , alors les normes 1N  et 2N ne sont pas 

équivalentes.  
 
Preuve : à expliquer.  
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Exemples :  

 On se place dans n pour *n . Alors si  1,...,
n

nx x x  , 
2

x x n x
 
  . 

 On se place dans   0,1 ,E C  . Pour f E , on pose 
1

1
0

( )f f t dt   et 

 0,1

sup ( )
x

f f x



 . Montrer qu’elles ne sont pas équivalentes. Avec une fonction 

chapeau pointu qui tend vers 0 pour une norme mais pas pour l’autre.  
 
Proposition admise (*) : Dans un espace vectoriel normé E  de dimension finie, toutes les 
normes sont équivalentes.  
 

Propriété (*) : soit  ( , )E  un espace vectoriel normé de dimension finie. Soit  1,..., pB e e

une base de E . Alors on considère une suite ( )nx d’éléments de E . Soit a E . Alors )( nx  

converge vers a  si et seulement si )( nx tend vers a  coordonnée par coordonnée.  

Plus précisément, si ,1 1 ,2 2 ,...n n n n p px x e x e x e    et 1 1 2 2 ... p pa a e a e a e    , alors )( nx  

converge vers a  si et seulement si   ,1, , n k k
n

xk p a


  .  

 
Preuve : en prenant 

1
max k

k p
a a

 
 .  

 
Corollaire (*) : une suite de matrices ( )nM d’éléments de ( )pM K converge vers ( )pM M K

si et seulement si elle converge vers M coefficient par coefficient, c’est-à-dire que

 , 1, , ( )n ij iji j n M M   .  

 
Preuve : les coefficients sont les coordonnées dans la base canonique de ( )pM K .  

 
Exemples :  

 prendre la suite ( )nU d’éléments de 3 définie par 
41 1

, ,
!n

n n
U

n n n

 
  
 

.  

 On pose 
0

0

a
D

b

 
  
 

, avec ,a b . Déterminer 
0

lim
!

kn

n
k

D

k


 
 
 
 .  

 
Exemple (*) : soit ( )pE M K . Soient ,A B E  et ( )nA , ( )nB  deux suites de matrices de E

telles que n
n

A A

  et n

n
B B


 . Alors n n

n
A B AB


 .  

 
Proposition (*,PV) : Soit ( )pA M K . Alors A est limite d’une suite de matrices inversibles.  

 

Preuve : Dans  pM   muni de la norme 
1 ,
max ij

i j n
M M

  
 , on prend  pA M   et pour 

*n , on pose 
1

n pA A I
n

  . Alors n
n

A A

 . Pour n assez grand, nA est inversible.  
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4) Topologie d’un espace vectoriel normé.  
 
Dans tout ce paragraphe, ( , )E  est un espace vectoriel normé. 

 
Définitions : Soit 0,r a E  .  

 La boule ouverte de centre a et de rayon r est l'ensemble  ( , ) ,B a r x E x a r    . 

 La boule fermée de centre a et de rayon r est l'ensemble  ( , ) ,B a r x E x a r    . 

 La sphère de centre a et de rayon r est l'ensemble  ( , ) ,B a r x E x a r    . 

 
Exemple : dessiner les boules ouvertes de centre 0E et de rayon 1 dans le plan usuel pour les 

différentes normes 
2
et 


. 

 
Définition (*) : Soit C une partie (un sous-ensemble) de E . On dit que C est convexe si et 
seulement si  , , 0,1 , (1 )u v C t tu t v C       (le segment qui relie u et v  est tout entier 

inclus dans C ).  
 

Explication et dessins dans le plan :     , , 0,1 ,A B M P t AM t AB    
 

.  

Donc     , ( (1 ) , (1 ) ), 0,1A B A BA B M tx t x ty t y t       

On prend ( , )u OA x y 


et ( ', ')v OB x y 


.  
 
Propriété :  

 Les boules (ouvertes et fermées) incluses dans E sont convexes.  
 Les sous-espaces vectoriels de E sont convexes.  

 
Preuve : avec (1 ) (1 )tx t y t x t y     .  

 

Exemple :  nS    est une partie convexe de  nM  .  

 
Définitions (*) : Soit A une partie de E . Soit a A .  

 On dit que a est intérieur à A si et seulement si il existe 0r  tel que ( , )B a r A .  

 A est ouvert si et seulement si pour tout a A , il existe 0r  tel que ( , )B a r A . Cela 
signifie que A  contient une petite boule ouverte autour de chacun de ses points.  

 
Exemples : déterminer si certains sous-ensembles sont ouverts ou pas. 

  0,1  ;  0,1  ;  .  

 Les boules ouvertes sont des ouverts. Mais pas les boules fermées.  
 L’ensemble des matrices diagonalisables de 2( )M K n’est pas ouvert dans 2( )M K (en 

prenant 2 12I E ).  

 
Propriétés :  

 Une intersection finie d’ouverts de E est un ouvert de E . 
 Une réunion quelconque d’ouverts de E est un ouvert de E .  
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Preuve :  à faire. 
 
Définitions (*) : Soit A une partie de E .  

 Soit a E . On dit que a  est adhérent à A si et seulement s’il existe une suite ( )nx

d’éléments de A tel que n
n

x a
 
 .  

 L’adhérence de A , notée ( )Adh A ou A est l’ensemble des points adhérents à A . 

 A est fermé si et seulement si pour tout suite ( )na d’éléments de A qui converge vers 

a A , on a a A  
 
Exemples :  

  0,1  ;  0,1  ;  .    0,1 0,1 dans 2 . 

 Les boules fermées et les sphères sont des fermés.  
 On munit 2 de la norme euclidienne usuelle. Quelle est l’adhérence de * *

   ?  

 
Propriété : Soit A une partie de E . Soit a E . a  est adhérent à A si et seulement si 

0, ( , )r B a r A     .  
 
Preuve : à ne pas faire. Faire un dessin.  
 
Propriété : Soit A une partie de E . Les assertions suivantes sont équivalentes : 

 A est fermé 
 \E A est un ouvert.  

 
Preuve : à faire.  
 
Propriété :  

 Une union finie de fermés est un fermé.  
 Une intersection quelconque de fermés est un fermé.  

 
Preuve : par passage au complémentaire.  
 
Remarques :  

 Il y a des ensembles qui ne sont si ouverts ni fermés.  
 Il y a des ensembles qui sont ouverts et fermés.  

 
Définition (*) : Soit A une partie de E . Soit D A . On dit que D est dense dans A si et 
seulement si pour tout élément a A , il existe une suite ( )n nd  d’éléments de D  qui converge 

vers a .  
 
Exemple admis :  est dense dans  (tout réel est limite d’une suite de rationnels).  
 
Remarque : si 1N , 2N  sont deux normes équivalents sur E , alors les propriétés topologiques 

sont les mêmes pour 1N , 2N  (convergence des suites, ouverts, fermés,…) 
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B) Limite et continuité dans un espace vectoriel normé. 
 
Soient ( , )

E
E  et ( , )

F
F deux espaces vectoriels normés. Soit A un sous-ensemble de E . 

Soit :f A F .  

 
1)  Limite en un point.  

 
Définition : f est bornée si et seulement s’il existe *M   tel que , ( )

F
x E f x M   .  

 
Définition : Soit A une partie de E . Soit a un point de E adhérent à A . Soit b F et soit f
une application de A  dans F .  
On dit que ( )

x a
f x b


 si et seulement si ( ) 0

x a
f x b


   

(autrement dit, 0, 0, , ( )
E F

x A x a f x b              ) 

 
Proposition : caractérisation séquentielle de la limite. Soit a un point de E adhérent à A . 
Soit b F .  Alors ( )

x a
f x b


  si et seulement si pour toute suite  nx   d’éléments de A  telle 

que n
n

x a

 , on a ( )n

n
f x b


 .  

 
Propriété : opérations sur les limites. Soit a  un point de E adhérent à A . Soit , 'b b F et 
soient ,f g deux applications de A  dans F . Soient , K   .  

On suppose ( )
x a

f x b

 et ( ) '

x a
g x b


  

 Alors ( ) ( ) '
x a

f x g x b b   


    

 Soit :h A K telle que ( )
x a

h x k

 . Alors ( ) ( )

x a
f x h x k b


  

 Soit B une partie de F tel que b est adhérent à B . Soit :h B G , où G est un espace 
vectoriel normé de dimension finie. On suppose ( )

y b
h y c G


  . Alors ( ( ))

x a
h f x c


 .  

 
Propriété : On suppose que F est de dimension finie. 
 Soit a un point de E adhérent à A . Soit b F et soit f une application de A  dans F . Soit 

1( ,..., )pB u u une base de F .  

Pour x A , on note 
1

( ) ( )
p

k k
k

f x f x u


 (les kf sont appelées les fonctions coordonnées de f

dans B ). Alors si 
1

p

k k
k

b b u


 , on a  ( ) 1, , ( )k k
x a x a

f x b k p f x b
 
      

(La convergence de ( )f x vers b équivaut à la convergence coordonnée par coordonnée).  
 
Preuve : non faite ; avec la caractérisation séquentielle.  
 

2) Continuité en un point.  
 
Définition : soit a A . On dit que f est continue en a  si et seulement si ( ) ( )

x a
f x f a


 .  
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Proposition : caractérisation séquentielle de la continuité. Soit a A . 
Alors f  est continue en a  si et seulement si pour toute suite  nx  d’éléments de A  telle que

n
n

x a

 , on a ( ) ( )n

n
f x f a


 .  

 
Remarque : pour montrer qu’une fonction n’est pas continue en a , il suffit de trouver deux 
suites ( ), ( )n nx y qui tendent vers a et telles que ( )nf x et ( )nf y  ont des limites différentes. Ainsi, 

2

2 2

:
( , )

f xy
x y

x y






 
si ( , ) (0,0)x y   et (0,0)f a  n’est pas continue en (0,0) .  

 
3) Continuité sur une partie.  

 
Définition : On dit que f est continue sur A  si et seulement si elle est continue en tout a A . 
 
Définition : Une application : nf K K est une application polynomiale de n variables si et 

seulement si c’est une combinaison linéaire de fonctions du type 1
1 ... n

nx x , où 1,..., n   .  

 
Exemple : 3 2( , , )f x y z xy x y z  .  
 
Propriétés : Opérations sur les fonctions continues (avec K  ou  ).  

 Une somme et une composée de fonctions continues sont continues.  
 Un produit de fonctions continues à valeurs dans K est une fonction continue.  
 Un quotient de fonctions continues à valeurs dans K dont le dénominateur ne s’annule 

pas est continue.  
 Si :h A K et :f A B  sont continues sur A , alors h f est continue sur A .  

 Les fonctions polynomiales sont continues sur nK .  
 Lorsque F est dimension finie, f est continue sur A si et seulement si ses fonctions 

coordonnées dans une base de F sont continues sur A .  
 
Exemples :  

 On définit
cos( ) sin( )

( )
sin( ) cos( )

t t
f t

t t

 
  
 

. Alors f est continue sur  . 

 
2

2 2
:
( , ) (3 )x y

g
x y e x y


 

 
est continue.  

 Soit 2:f   , continue. Alors , : ( , )x g y f x y    est continue sur  . 
 
Proposition : soit :f E F , continue sur E . Alors : 

 Si G est un fermé de F , alors  1( ) , ( )f G x E f x G     est un fermé de E . 

 Si O est un ouvert de F , alors  1( ) , ( )f O x E f x O     est un ouvert de E . 

 
Preuve : à faire avec les suites.  
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Proposition : soit :f E   , continue sur E . Alors : 

  , ( ) 0O x E f x   est un ouvert de E  

  , ( ) 0F x E f x   et  , ( ) 0G x E f x   sont des fermés de E ,  

  \ , ( ) 0E F x E f x   est un ouvert de E  

 
Preuve : on prouve que  et  0 sont des fermés de  .  

 
Exemples :  

  2 2 2( , ) , 4F x y x y    est un fermé de 2 .  

    2 2( , ) , 2 3 0 ( , ) , 0F x y x y z x y x         . F est un fermé de 2 .  

/ 
Définition : Soit k  . 

 f est k  lipschitzienne sur A si et seulement si ,x y A  , ( ) ( )
F E

f x f y k x y   . 

 f est lipschitzienne sur A si et seulement si k   f est k  lipschitzienne sur A . 

 
Proposition : toute fonction lipschitzienne sur A est continue sur A .  
 
Preuve : immédiat.  
 

Exemple (*) : Soit :
E

E
f

x x





. Alors f est continue sur E .  

 

Preuve : avec y x y x   , f est 1-lipschtizienne sur E .  

 
4) Continuité en dimension finie 

 
Soient ( , )

E
E  et ( , )

F
F deux espaces vectoriels normés. On suppose E  de dimension 

finie. Soit A un sous-ensemble de E . Soit :f A F .  
 
Théorème des bornes atteintes (*) : On suppose que A est non vide, fermé et borné. Soit 

:f A  une fonction continue. Alors f est bornée sur A et atteint ses bornes (elle admet 
donc un minimum et un maximum global sur A ).  
 
Exemple : si f est continue de    0,1 0,1  dans  , alors elle est bornée.  

 
Proposition (*) : soit ( , )f L E F . Alors f est lipschitzienne, donc continue sur E .  
 
Preuve : On montre qu’il existe * , , ( )

F E
C u E f u C u    . Soit 1,( ..., )pB e e une base 

de E . Pour 1 1 ... p pu u e u e E    , on pose 
1

n

kE
k

u u


 . Alors ( )
F E

f u M u , où 

1
max ( )k Fk n

M f e
 

 . Puis ( ) ( )
F E

f x f y M x y   ,  
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Exemples (*) : Soient , , ( )nA B C M K et ( )nA une suite d’éléments de ( )nM K . On suppose 

que n
n

A A

  et  nP GL  . Alors :  

  ( ) ( )n
n

Tr A Tr A

  

 n
n

A B AB

  et 1 1

n
n

P A P P AP 


  

 On suppose n

n
B C


 . Montrer que C est la matrice d’un projecteur et que BC CB . 

 On note   ,1( ) sup , , 1nN A AX X M X    . Montrer que ( )N A  existe et que 

c’est un maximum.  
 
Définition : soit 1,..., ,pE E F des espaces vectoriels normés de dimension finie.  

Soit 1: ... pf E E F   . Alors f est p-linéaire si et seulement si elle est linéaire par rapport à 

chacune de ses variables, c’est-à-dire que 1 1,.., ...p px x E E    , pour tout  1,i p , 

1 1, 1( ,..., , ,..., )i i px f x x x x x  est linéaire.  

 
Proposition : soit 1,..., ,pE E F des espaces vectoriels normés de dimension finie.  

Soit 1: ... pf E E F   . Si f est p-linéaire, alors elle est continue sur 1 ... pE E   

 
Preuve : non faite.  
 
Exemples (*) :  

 Si E est euclidien, alors ( , ) ,x y x y est bilinéaire, donc continue.  

 Soit ( ), ( )p pA B  deux suites d’éléments de ( )nM K . On suppose que p
p

A A

  et 

p
p

B B

  Alors p p

p
A B AB


 . On retrouve ce résultat.   

 Soit *p . L’application 
   

: n n
p

M K M K
f

M M




 est continue.  

En effet, c’est la composée de ( ) ( ,..., )g M M M  qui est linéaire et de  

1 1( ,..., ) ...p ph M M M M  qui est p linéaire.  

 
Proposition (*) : det : ( )nM K K est continue sur ( )nM K .  
 
Preuve : Soit B  la base canonique de nK . Alors 1 1: ( , ..., ) det ( ,..., )n B nf C C C C est n

linéaire donc continue sur  nnK  et  1: ,..., ng M C C  est continue avec la convergence 

coefficient par coefficient. Donc det det B g  est continue sur ( )nM K .  
 
Exemple : soit *n . Alors  nGL  est un ouvert dense dans ( )nM  .  

 
 
 


