11-Espaces vectoriels normés

Dans tout ce chapitre, on pose K =Rou C.

A) Structure d’un espace vectoriel normé.

1) Norme dans un espace vectoriel

Définition (*) : soit £un K —espace vectoriel et N une application de £ dans R . Alors N est
une norme sur £ si et seulement si :
e YueE,Nu)=0

o VueE,Nu)=0=u=0, (séparation)
e YVueENVAeR,N(Au) =|/1|N(u) (homogénéité)
o VYuveE N(u+v)<N®u)+N(v) (inégalité triangulaire)
Un espace vectoriel normé est alors un espace vectoriel muni d’une norme.

Propriété (rappel) : soit £k €R . Soit 4 une partic non vide et majorée de R. On note
kA ={kx,x e A} . Alors sup(k4)=ksup(A4).

Exemples (rappels) :
e soit (E,(,)) un espace préhilbertien. Alors I’application définie sur E par ||x||= /(x,x)
associée a ce produit scalaire est une norme sur £ . C’est la norme euclidienne associée.
e Si [ est un sous-ensemble non vide de R, on note B(/,K)I’espace vectoriel des

fonctions bornées sur 7 a valeurs dans K .
On définit sur B(/, K)la norme infinie par Vf € B(/,K),

1., =sul 7).

|| ||w’1 est une norme sur B(/,K).

Exemples (%) :

b

et ||x||m = max(|xk|). Ce sont des normes sur R". Regarder ce que cela donne pour
‘ 1<k<p

a) Dans R”, soitx =(x,,x,,...,x,) € R”. On déﬁnit”x”1 = ﬁ]xk
k=1

xX=e +e,.
b) En particulier, le module (ou la valeur absolue dans R ) est une norme sur X .

¢) Dans M,(R), on définit |M|| = ii‘Mg‘ et |M
i=1 j=1

i=l j=

= max MU‘. Ce sont des normes.

© <, j<p

Calculer la norme de 7, pour chacune des deux normes.

Propriété : soit (E,
o =yl
o ezl

||) un espace vectoriel normé. Soit x,y € E . Alors :



Preuve : a expliquer.

Définition : soit (£,

||) un espace vectoriel normé. Soient x,y € E . La distance entre xet y

est alors égale a d(x,y) = ||x— y||

2) Suite dans un espace vectoriel normé.

Soit (E,

||) un espace vectoriel normé.

Définition :
e Soit Aune partie de E. Alors Aest bornée si et seulement s’il existe M € R tel que
Vx e A|x|< M.
e Soit (x.)une suite d’¢léments de E. Alors (x.)est bornée si et seulement s’il existe
M eR’ tel que VneN,|x,|<M .

Dessin : dans le plan usuel pour la norme euclidienne.

Définition : On considere une suite (x,)d’éléments de £ et a € E. On dit que (x.) converge

vers a quand n tend vers I’infini et on note x, — a si et seulement si Hxn —-a

n—+w

— 0(c’est-

n—+w

a-dire :Ve>0,INeN,Vn > N,

X, —aHSg).

Remarques :
e Il y aunicité de la limite si elle existe.

e (x,)diverge si et seulementsi Vae E,3¢>0,YNeN,In> N,

xn—aH>g.

e Dans un espace vectoriel normé, une suite ne peut pas tendre vers +o0 ou —o.

Exemples (¥) :
e Onprend E=Cet || || :| | (Ie module). Alors x, —» a< |xn -a

n—>+w

e On prend E=M,(R). On se place dans (E,

— 0.

n—+ow

||OO), avec, pour M eFE,

M ij‘ . Etudier la convergence de la suite définie par M, = M —ll b

n
||OO) . Etudier la

= max
© I<i,j<p

|

e Onpose E = B(R,R). On se place dans 1’espace vectoriel normé (F,

convergence la suite (f,) définie par Vx € R, f, (x) =nsin (izj
n

Propriétés : On considére une suite (x,) d’éléments de E qui converge versa € E£. Alors (x,)

est bornée et ||x,

= lal-

n—+w

Preuve : a expliquer.



Propriétés : soit (x,),(y,) deux suites d’éléments d’un espace vectoriel normé (£, ||) Soit
A, e K . Soit (U,) une suite d’éléments de K. Onsuppose x, — a,y, > betU, — ¢
n— 4w n— +o n— +0o

. Alors :

o Ax, +uy, = Aa+ub

n— +o
e Ux, — ca
n— +w

Preuve : non faite.
Rappel-propriété : soit (x,)une suite d’éléments d’une espace vectoriel normé (E, ||) Une

suite extraite (ou une sous-suite) de (x.) est une suite de la forme (x W)), ou ¢ est une

application de N dans N strictement croissante.
Si x, - a e E, alors toute suite extraite de (x,) tend également vers a.

n—>+00
Ainsi, si deux suites extraites de (x,) tendent vers des limites différentes, alors (x,)n’a pas de
limite.

Exemple : soit 4€ M (K).On suppose 4" — B. Alors A™ —> B

n—+ow n—+ow

Propriété : soit (x.) une suite d’éléments d’un espace vectoriel normé (£, ||) . On suppose que

(x,,) et (x,,,)tendent vers une méme limite a€ £ . Alors x, — a .

n— +o

3) Equivalence des normes

Définition (*) : Soient N, et N, deux normes sur un espace vectoriel £. On dit que N, et N,

sont équivalentes si et seulement si il existe deux constantes a,beR’ telles que

veeE {me)s aN, (x)
N,(x) <N, (x)

Propriétés : Soit £ un espace vectoriel et N,, N, deux normes équivalentes sur £ .
e Soit Ac E. Aest bornée pour la norme N, si et seulement si elle est bornée pour la
norme N, .
e Soit (U,) une suite d’éléments de E. Soit a€ 4. Alors (U,) converge vers apour la
norme N, si et seulement si elle converge vers a pour la norme N, .
e En particulier, s’il existe une suite (U,) qui converge vers a € A pour lanorme N, mais

ne converge pas vers agpour la norme N,, alors les normes N, et N,ne sont pas

29
équivalentes.

Preuve : a expliquer.



Exemples :

o, <l <l

e Onse place dans R"pour neN". Alors si x=(x,,...,x,)eR",
e On se place dans E = C([O,l],]R). Pour feE, on pose |f] = j|f(t)|dt et
0
|| f ||w = xsel[tpl]| f (x)| . Montrer qu’elles ne sont pas équivalentes. Avec une fonction
chapeau pointu qui tend vers 0 pour une norme mais pas pour 1’autre.

Proposition admise (*) : Dans un espace vectoriel normé E de dimension finie, toutes les
normes sont équivalentes.

Propriété (*) : soit (£, ||) un espace vectoriel normé de dimension finie. Soit B = (el,...,ep)

une base de E. Alors on considere une suite (x,)d’éléments de E. Soit ae E. Alors (x.)
converge vers a si et seulement si (x,) tend vers a coordonnée par coordonnée.
Plus précisément, si x,=x, e +x,,¢,+..+x, e, et a=ae +ae,+..+ae,, alors (x.)

converge vers a si et seulement si Vk €[L, p].x,, — a,.
T n—>+o

Preuve : en prenant ||a| = max
1<k<p

a-

Corollaire (*) : une suite de matrices (M) d’¢éléments de M ,(K) converge vers M € M ,(K)

si et seulement si elle converge vers M coefficient par coefficient, c’est-a-dire que
Vi,je[[l,n]],(Mn)ij —->M,.

Preuve : les coefficients sont les coordonnées dans la base canonique de M ,(K).

Exemples :

4
e prendre la suite (U,)d’éléments de R’ définie par U, = (l, ntl ,n—‘j .
n n!

N

a 0 . . (& D
e Onpose D= 0 b ,avec a,b e R. Déterminer lim Z— .

n—+oo| 4= k!

Exemple (¥) : soit £=M (K). Soient4,Be E et(4,),(B,) deux suites de matrices de £
tellesque 4, > A et B, -> B.Alors 4B, > AB.

n—>+00 n—>+00 n—+0

Proposition (*,PV) : Soit 4e M (K). Alors 4 est limite d’une suite de matrices inversibles.

= max

w 1<i,j<n

Preuve : Dans M (R) muni de la norme ||M ,onprend Ae M p(]R) et pour

M,

. 1 . .
neN ,onpose 4,=A4+—1, . Alors 4, — A.Pour nassez grand, 4, est inversible.

n n—+0



4) Topologie d’un espace vectoriel normé.

Dans tout ce paragraphe, (E,

||) est un espace vectoriel normé.

Définitions : Soit » >0,a e E .

e Laboule ouverte de centre a et de rayon 7 est I'ensemble B(a,r) = {x ek, |x— a" < r} .

e Laboule fermée de centre a et de rayon r est I'ensemble B(a,r) = {x eE,|x- a|| < r} .

e La sphére de centre a et de rayon 7 est 'ensemble B(a,r) = {x €E,|x—d||= r} .
Exemple : dessiner les boules ouvertes de centre 0, et de rayon 1 dans le plan usuel pour les

différentes normes || ||2 et || ||w

Définition (*) : Soit Cune partie (un sous-ensemble) de £ . On dit que C est convexe si et
seulement si Vu,ve C,Vt€[0,1],ru+(1—-1)v e C (le segment qui relie uet v est tout entier

inclus dans C).

Explication et dessins dans le plan : [ 4, B]= {M e P,3t <0, 1],W = tﬁ} .
Donc [ A4, B]={M(tx, +(1=1)x,,ty,+(1—-1)y,),t €[0,1]}
On prend u=52=(x,y)et v=5l§=(x',y').

Propriété :
e Les boules (ouvertes et fermées) incluses dans E sont convexes.
e Les sous-espaces vectoriels de E sont convexes.

Preuve : avec ||tx +(1- t)y” < t||x|| +(1- t)||y|| i
Exemple : S;*(R) est une partie convexe de M, (R).

Définitions (*) : Soit 4 une partiede E. Soit ae€ 4.
e Ondit que aest intérieur a A4 si et seulement si il existe » > 0tel que B(a,r)c 4.

e Aestouvertsi et seulement si pour tout a € 4, il existe » > 0tel que B(a,r) c 4. Cela
signifie que 4 contient une petite boule ouverte autour de chacun de ses points.

Exemples : déterminer si certains sous-ensembles sont ouverts ou pas.
e J0.1[;]0,1]; R.
e Les boules ouvertes sont des ouverts. Mais pas les boules fermées.
e L’ensemble des matrices diagonalisables de M ,(K)n’est pas ouvert dans M,(K)(en
prenant [, +&E,,).

Propriétés :
e Une intersection finie d’ouverts de E est un ouvert de E.
e Une réunion quelconque d’ouverts de E est un ouvertde F.



Preuve : a faire.

Définitions (*) : Soit A4 une partie de E'.
e Soit ae E. On dit que a est adhérent a Asi et seulement s’il existe une suite (x,)

d’¢léments de Atel que x, — a.

n— +w
e L’adhérence de A4, notée Adh(A)ou Aest I’ensemble des points adhérents a 4.
e Aest fermé si et seulement si pour tout suite (a,)d’éléments de A4 qui converge vers
acA,onaacAd

Exemples :
e [0,1];]0,1]; R.[0,1]x[0,1]dans R*.
e Les boules fermées et les sphéres sont des fermés.
e On munit R?de la norme euclidienne usuelle. Quelle est ’adhérence de R xR’ 2

Propriété : Soit Aune partie de E. Soit ae E. a est adhérent a Asi et seulement si
Vr>0,B(a,r)mA=D.

Preuve : a ne pas faire. Faire un dessin.

Propriété : Soit 4 une partie de E . Les assertions suivantes sont équivalentes :
e Aestfermé
e FE\Aestun ouvert.

Preuve : a faire.

Propriété :
e Une union finie de fermés est un fermé.
e Une intersection quelconque de fermés est un fermé.

Preuve : par passage au complémentaire.

Remarques :
e Il yades ensembles qui ne sont si ouverts ni fermés.
e Il yadesensembles qui sont ouverts et fermés.

Définition (*) : Soit Aune partie de E. Soit D c A. On dit que D est dense dans Asi et

seulement si pour tout €lément a € A4 , il existe une suite (d,),_, d’éléments de D qui converge

VEIS a.

Exemple admis : (Q est dense dans R (tout réel est limite d’une suite de rationnels).

Remarque : si N,, N, sont deux normes équivalents sur £, alors les propriétés topologiques
sont les mémes pour N,, N, (convergence des suites, ouverts, fermés,...)



B) Limite et continuité dans un espace vectoriel normé.

Soient (£, ||E) et (F,
Soit f:4—> F.

|| ) deux espaces vectoriels normes. Soit 4 un sous-ensemble de £

1) _Limite en un point.

Définition : f est bornée si et seulement s’il existe M e R, tel que Vx e E,

S|, <M.

Définition : Soit 4 une partie de E . Soit a un point de £ adhérenta A. Soit be Fetsoit f
une application de 4 dans F .
On dit que f(x) — bsi et seulement si || f(x)-b

—0
Xx—a

(autrement dit, V& > 0,3 >0,Vx e A4,

x—a”E Sa:”f(x)—b”F <¢)

Proposition : caractérisation séquentielle de la limite. Soit ¢ un point de £ adhérenta A.

Soit be F. Alors f(x) — b si et seulement si pour toute suite (x,) d’éléments de 4 telle
xX—>a

na .
quex, n_}—)ﬁ)a, 0 f(xn)nj b

0

Propriété : opérations sur les limites. Soit ¢ un point de E adhérent a 4. Soit b,b'e F et

soient f, g deux applications de 4 dans F . Soient ,f € K .
On suppose f(x) >bet g(x) > b’

e Alors af(x)+ fg(x)>ab+pb'
o Soit h: 4 —> K telle que h(x) —> k. Alors f(x)h(x) > kb

e Soit Bune partie de F tel que b est adhérent a B . Soit 4: B — G, ou G est un espace

vectoriel normé de dimension finie. On suppose /() - ce G . Alors A(f(x))—>c.
y—> x—a

Propriété : On suppose que F est de dimension finie.

Soit aun point de E adhérent a A. Soit b € F et soit fune application de 4 dans F . Soit

B =(uy,...,u,)une base de F.

P
Pour x€ 4, on note f(x)= Z Ji(x)u, (les f, sont appelées les fonctions coordonnées de f
k=1

p
dans B). Alors si b= Zbkuk ,ona f(x) > b Vke [[l,p]],fk(x) - b,
k=1 X—a X—a

(La convergence de f(x)vers b équivaut a la convergence coordonnée par coordonnée).
Preuve : non faite ; avec la caractérisation séquentielle.

2) Continuité en un point.

Définition : soit a € A. On dit que f est continue en a si et seulement si f(x) — f(a).
X—a



Proposition : caractérisation séquentielle de la continuité. Soita € 4.
Alors f est continue en a si et seulement si pour toute suite (x, ) d’éléments de A4 telle que

xnnzwa, on af(x")n:iwf(a)'

Remarque : pour montrer qu’une fonction n’est pas continue en a, il suffit de trouver deux
suites (x,),(y,) qui tendent vers a et telles que f(x,)et f(y,) ontdes limites différentes. Ainsi,
R> >R
xy st (x,y)#(0,0) et £(0,0)=a n’est pas continue en (0,0).

(X)) > ———
(x,») e

3) Continuité sur une partie.

Définition : On dit que f est continue sur A si et seulement si elle est continue en touta € 4.

Définition : Une application f: K" — K est une application polynomiale de » variables si et

seulement si c’est une combinaison linéaire de fonctions du type x/"..x, ou ¢,,...,ar, e N.
Exemple : f(x,y,z)=xy+x"y’z.

Propriétés : Opérations sur les fonctions continues (avec K =Rou C).
e Une somme et une composée de fonctions continues sont continues.
e Un produit de fonctions continues a valeurs dans K est une fonction continue.
e Un quotient de fonctions continues a valeurs dans K dont le dénominateur ne s’annule
pas est continue.
e Sih:A—>Ket f:A— B sontcontinues sur A4, alors % f est continue sur 4.

e Les fonctions polynomiales sont continues sur K" .
e Lorsque F est dimension finie, f est continue sur Asi et seulement si ses fonctions

coordonnées dans une base de F sont continues sur 4.

Exemples :
cos(?) —sin(?)

e On définit f(¢) = (sin(t) cos(?)

j. Alors f est continue sur R.

. _ R? >R
8 ) > e (B 47

e Soit /:R* —> R, continue. Alors VxeR,g:y+> f(x,y) est continue sur R.

est continue.

Proposition : soit /' : £ — F, continue sur £ . Alors :
e Si Gestunferméde F,alors f7(G)={xeE, f(x)eG} estun ferméde E.

e Si Oestunouvertde F,alors /7' (O)={x€eE, f(x) €O} estunouvertde E.

Preuve : a faire avec les suites.



Proposition : soit /' : £ — R, continue sur £ . Alors :
e O={xekE,f(x)>0}estunouvertde E

. Fz{er,f(x)zO}et G:{er,f(x)ZO}sontdes fermés de F,
. E\Fz{er,f(x)iO}estunouvertde E

Preuve : on prouve que R, et {0} sont des fermés de R.

Exemples :
o FZ{(X,y)ERZ,x2+y2 24} est un fermé de R?.
o F={(x,y)eR’x+2y-32<0}n{(x,y)eR’,x20}. Festun fermé¢ de R’.

/
Définition : Soit ke R, .

e fest k—lipschitzienne sur A si et seulement siVx,ye€ 4,

S =D, <klx=],-

e festlipschitzienne sur A4 si et seulement si3k € R, fest k—lipschitzienne sur 4.

Proposition : toute fonction lipschitzienne sur A4 est continue sur 4.

Preuve : immédiat.

9
Exemple (*) : Soit f': . Alors f est continue sur E.
x = [,

Preuve : avec || y—x|| > ||| y||—||x , fest 1-lipschtizienne sur E.

4) Continuité en dimension finie

Soient (E, ||E) et (F,
finie. Soit 4 un sous-ensemble de E. Soit f: 4 — F'.

||F) deux espaces vectoriels normés. On suppose £ de dimension

Théoréme des bornes atteintes (*) : On suppose que A est non vide, fermé et borné. Soit
f:A— Rune fonction continue. Alors f est bornée sur 4 et atteint ses bornes (elle admet
donc un minimum et un maximum global sur A4).

Exemple : si f est continue de [0,1]x[0,1] dans R, alors elle est bornée.

Proposition (*) : soit f'€ L(E,F). Alors f est lipschitzienne, donc continue sur E .

Preuve : On montre qu’il existe C € Ri,Vu ekE,

f(u)||F < C||u||E Soit B = (e, ...,e,) une base

de E. Pour u=ue +..+u,e, €k, on pose ||u||E:Zn:|uk| Alors ||f(u)||F£M||u|E, ou
k=1

f(e), - Puis| /()= f )], <M [x—y

M =max

I<k<n E’



Exemples (¥) : Soient 4,B,C e M, (K)et (4,)une suite d’éléments de M, (K). On suppose
que 4, > A et PeGL,(R). Alors :

n—+0

o Tr(4,) — Tr(A)
o AB —> ABet PAP"' — PAP’'

n—>+o0 n—>+0

e Onsuppose B" — C.Montrer que C est la matrice d’un projecteur et que BC =CB.

e On note N(A4)= sup{”AX

¢’est un maximum.

XeM, (R),

X || = 1} . Montrer que N(A4) existe et que

Définition : soit E,,..., £, F' des espaces vectoriels normés de dimension finie.
Soit f:E x..xE, — F . Alors f est p-lin€aire si et seulement si elle est lincaire par rapport a
chacune de ses variables, c’est-a-dire que Vx,,..x, € E x..xE,, pour tout ie[lp],

X = f(X)50e X, X, X, 5000, X)) €St linaire.

i+12°
Proposition : soit £,,..., E , F des espaces vectoriels normés de dimension finie.

Soit f:E\x..xE, — F . Si festp-lin€aire, alors elle est continue sur £, x..x E,

Preuve : non faite.

Exemples (¥) :
e Si Eesteuclidien, alors (x,y) —> <x, y> est bilinéaire, donc continue.

e Soit (4,),(B,) deux suites d’¢léments de M, (K). On suppose que 4, — 4 et

p—>+x0

Bp — B Alors Apo — AB. On retrouve ce résultat.

p—>+0 po+o

(K)—>M,(K)
M —>M?

En effet, c’est la composée de g(M)=(M,..,M) qui est linéaire et de
hM,,...,.M,)=M,. .M, quiest plinéaire.

* . . M .
e Soit p e N . L’application f: " est continue.

Proposition (*) : det: M, (K) — K est continue sur M (K).

Preuve : Soit B la base canonique de K". Alors f:(C,...,C,) —> det,(C,,...,C,)est n—

. y . . n .
linéaire donc continue sur (K ”) et g: M —>(Cl,... C ) est continue avec la convergence

>~'n

coefficient par coefficient. Donc det = det ;o g est continue sur M, (K).

Exemple : soit neN". Alors GL, (R)est un ouvert dense dans M, (R).
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