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13-Fonctions de plusieurs variables 
 
A) Fonctions vectorielles 
 
Dans tout ce paragraphe, I désigne un intervalle de  , non vide et non réduit à un point. 
Soit *n . On s’intéresse à l’étude des fonctions de la forme : nf I    
 

1) Dérivation 
 
Définition : soit : nf I   . Soit 0t I . On dit que f est dérivable en 0t si et seulement si son 

taux d’accroissement 0

0

( ) ( )
( )

f t f t
T t

t t





admet une limite finie quand t  tend vers 0t . Cette 

limite est alors notée 0'( )f t .  

 
 
 
Remarque : la dérivabilité et la valeur de 0'( )f t ne dépendent pas du choix de la norme dans 

n .  
 
 
 

Propriété : soit : nf I   . Pour t I , on note  1 2( ) ( ), ( ),..., ( )nf t f t f t f t . Soit 0t I . Alors 

f est dérivable en 0t si et seulement si pour tout  1,k n , kf est dérivable en 0t et on a alors 

 1 2'( ) '( ), '( ),..., '( )nf t f t f t f t (on peut dériver coordonnée par coordonnée).  

 
Preuve :  
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Remarque : en identifiant une matrice  nM M  avec un élément de 
2n (constitué de ses 

2n coefficients), on peut étendre les résultats précédents aux applications à valeurs dans 

 nM  , et plus généralement dans n’importe quel espace vectoriel normé de dimension finie.  

 
Exemples :  

 On prend  ( ) cos( ),sin( )f t t t . Calculer '( )f t  pour t .  

 On note 
cos( ) sin( )

( )
sin( ) cos( )

t t
R t

t t

 
  
 

. Montrer que R est dérivable et calculer 'R .  

 
 
 
 
 
 
 
 
 
 
 
 
 
Propriété : soit : nf I   . Soit 0t I . Soit  0,D h t h I    . Alors f est dérivable en 

0t si et seulement si f admet un développement limité à l’ordre 1 en 0t , c’est-à-dire qu’il existe 

un vecteur na et : nD    tels que 0 0, ( ) ( ) ( )h D f t h f t h a h h       et 
0

( ) 0
h

h

 . 

On a alors 0'( )f t a .  

On note aussi 0 0 0( ) ( ) '( ) ( )f t h f t h f t o h     

 
Preuve rapide : on se ramène aux fonctions coordonnées.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 3

 
 
 
 
 
 
 
 

Exemple : Soit  ( ) , ln(1 )tf t e t  . En donner un développement limité à l’ordre 1 en 0.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Définition : soit : nf I   . Alors f est dérivable sur I si et seulement si elle est dérivable en 

tout point de I . f est de classe 1C  sur I si et seulement si elle est dérivable sur I et que 'f est 
continue sur I .  
 
Interprétation cinématique : si on prend 2n  (ou 3n  ), et que le paramètre t désigne le 
temps, ( ) ( ( ), ( ))f t x t y t désigne la position d'un mobile ponctuel à l'instant t. '( )f t  est alors le 
vecteur vitesse instantanée du mobile.  
 
 

2) Opérations sur les fonctions dérivables.  
 
Propriété : soient , : nf g I   . Soient ,   . On suppose f  et g  dérivables sur I . Alors 

f g  est dérivable sur I  et   ' ' 'f g f g       

 
Proposition : soient : nf I    et : n pL   , une application linéaire. On suppose que f

est dérivable sur I . Alors L f est dérivable sur I et pour t I ,    '( ) '( )L f t L f t . 

 
Preuve : on regarde le taux d’accroissement et on utilise la continuité des applications linéaires.  
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Exemples : Soit  nA M   et  nP GL  . Pour t , on pose 2( ) nM t I t A  , 

 2( ) ng t tr I t A   et 1( ) ( )h t PM t P  . Montrer que g  et h  sont dérivables sur  et calculer 

leurs dérivées.  
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Proposition : soient : nf I    et : J I  , où J est un intervalle de  . On suppose que f
est dérivable sur I  et que   est dérivable sur J . Alors f  est dérivable sur J et pour tout

t J ,   '( ) '( ( )) '( )f t f t t   . 

 
Preuve rapide : on écrit ( )f t pour t J à l’aide des coordonnées.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Exemple : Soit  nA M  . Pour t , on pose ( ) nf t A t I   et ( ) (sin( ))g t f t . 

Déterminer '( )g t pour t . 
 
 
 
 
 
 
 
 
 
 
 
 
Propriété : soient , : nf g I   . Soit : n n pB     , bilinéaire.  

On pose alors pour t I  :  ( ) ( ), ( )h t B f t g t . On suppose ,f g dérivables sur I . Alors h est 

dérivable sur I et on a    , '( ) '( ), ( ) ( ), '( )t I h t B f t g t B f t g t    .  

 
Preuve : On sait que B est continue car elle est bilinéaire.  
 

Soit 
       0 0 0 00

0 0 0

( ), ( ) ( ), ( ) ( ), ( ) ( ), ( )( ) ( )
( )

B f t g t B f t g t B f t g t B f t g th t h t
T t

t t t t t t

 
  

  
. 
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Exemple : Pour t , on pose ( ) ( ) ( )f t M t N t  et 2( ) ( )g t M t , avec, pour t , 

 ( ), ( ) nM t N t M   . On suppose que ( )t M t  et ( )t N t sont dérivables sur  .  Justifier 

que ,f g sont dérivables sur  et calculer '( )f t  et '( )g t .  
 
 
 
 
 
 
 
 
 
 
 
 
 
Propriété : n est muni de son produit scalaire usuel noté , . Soient , : nf g I   deux 

fonctions dérivables sur I . Soit B la base canonique de 2 .  
Alors l’application ,f g  définie sur I  par , ( ) ( ), ( )f g t f t g t est dérivable sur I  et 

, '( ) '( ), ( ) ( ), '( )f g t f t g t f t g t  . 

 

Exemple : On se place dans  , ,n  euclidien usuel. On considère : nf I    une fonction 

dérivable sur I , ne s’annulant pas sur I . Pour t I , on pose ( ) ( )g t f t . Montrer que g

est dérivable sur I et calculer 'g .  
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Propriété : soit *p . soient 1,.., : n

pf If   des fonctions dérivables.  

Soit  :
pnM   , p  linéaire. Pour t I , on pose 1( ) ( ( ),..., ( ))ph t M f t f t .  

Alors h est dérivable sur I et :  

1 2 1 2 1 2, '( ) ( '( ), ( )..., ( )) ( ( ), '( )..., ( )) ... ( ( ), ( )..., '( ))p p pt I h t M f t f t f t M f t f t f t M f t f t f t       

 
Remarque : on a ainsi une somme de p termes, et on dérive un à chaque fois en laissant les 
autres inchangés.  
 
Cas du déterminant : Soit B une base de n  et 1,.., : n

nf If    des fonctions dérivables.  

Pour t I , on pose 1( ) det ( ( ),..., ( ))B nh t f t f t . Alors h est dérivable sur I et on a : 

1 2 1 2 1'( ) det ( '( ), ( )..., ( )) det ( ( ), '( )..., ( )) ... det ( ( ),..., '( ))B n B n B nh t f t f t f t f t f t f t f t f t     

 
Exemple : soit  nA M  . On pose pour t  :  ( ) det nh t I t A  .  

On note 1( ,.., )nB E E la base canonique de n et 1( ,..., )nC C les colonnes de A .  

Ainsi,  1 1( ) det ,...,B n nh t E t C E t C   . Montrer que 
0

( ) 1 ( ) ( )
t

h t tr A t o t

    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Définition : soit : nf I   . Soit k . Alors f est de classe kC  sur I si et seulement si elle 

est k fois dérivable sur I et que ( )kf est continue sur I . 

Si on note  1 2( ) ( ), ( ),..., ( )nf t f t f t f t  pour t I , on a  ( ) ( ) ( ) ( )
1 2( ) ( ), ( ),..., ( )k k k k

nf t f t f t f t .  

Elle est de classe C  sur I si et seulement si elle est de classe kC  sur I pour tout k .  
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B) Dérivées partielles 
 
Dans la suite, on pose K   ou  .  
L’étude d’une fonction de p dans n se ramenant à celle de ses coordonnées, on s’intéresse 
ici aux fonctions de p dans  .  

p est muni d’une norme notée  que l’on peut choisir.  

Les résultats sur les espaces vectoriels normés s’appliquent donc.  
On considère U  un ouvert de p  et :f U   , une application.  

 
1) Continuité des fonctions de plusieurs variables 

 
Rappels :  

 Si a U , f est continue en a  si et seulement si ( ) ( )
x a

f x f a

  (autrement dit, pour 

toute suite  nU   d’éléments de U  telle que n
n

U a

 , on a ( ) ( )n

n
f U f a


 ). 

 Pour montrer qu’une fonction n’admet pas de limite en a , il suffit de trouver deux suites 

( )nU  et ( )nV qui tendent vers a mais telles que  ( )nf U  et  ( )nf V aient des limites 

différentes.  
 
 
Exemples : Etudier la continuité des fonctions suivantes sur 2 :  

 
2

2 2
( , ) si ( , ) (0,0)  et (0,0) 0

xy
f x y x y f

x y
  


. 

 
2

2 4
( , )  si ( , ) (0,0)  et (0,0) 0

xy
g x y x y g

x y
  


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Remarque : Soit   , , , ( , )S x y z U z f x y    . S  est une surface qui représente 

graphiquement la fonction f .  
 
 

 
 
 

2) Définition des dérivées partielles  
 
Définition : Soit pv  et g définie au voisinage de 0 par ( ) ( )g t f a t v  . On dit que f
admet une dérivée en a  suivant le vecteur v si et seulement si g est dérivable en 0. On note 

alors ( ) '(0)vD f a g . C’est la dérivée de f  en a  suivant le vecteur v . 

 

Exemple : on prend 
2

:
( , )

f
x y xy




 
. Déterminer la dérivée de f suivant le vecteur (1,1)v   en 

(2,1)a  . 
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Définition : Soit 1( ,.., )pa a a U  . La j  ème fonction partielle associée à f en a  est la 

fonction jf définie par 1 1 1( ) ( ,.., , , ,.., )j j j pf t f a a t a a  .  

 
 
 
 
Définition : Soit 1( ,.., )pa a a U  .On dit que f  admet une dérivée partielle en a par rapport 

à sa j  ème variable si et seulement si la j  ème fonction partielle associée à f en a , définie 

lorsque 1 1 1( ,.., , , ,.., )j j pa a t a a U     par 1 1 1( ) ( ,.., , , ,.., )j j j pf t f a a t a a  , est dérivable en ja  . 

Lorsque cette dérivée existe, on la note ( )j f a ou ( )
j

f
a

x




.  

 
Remarque : lorsqu’elle existe, la dérivée partielle de f en a par rapport à sa j  ème variable 

est la dérivée de f suivant le vecteur je , où  1,..., pB e e  est la base canonique de p .  

 
 
 
 
 
 
 
 
 
 
 
 
 
Exemples :  

 Soit 2( , , ) sin( )yzf x y z x e x  . Déterminer les dérivées partielles de f par rapport à 
chacune de ses variables.  
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 soit 
2 2

2 2
( , ) si ( , ) (0,0)  et (0,0) 0

x y
g x y x y g

x y
  


 . Montrer que g admet des 

dérivées partielles en tout point de 2  et les calculer.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Remarque (*) : essentiel pour bien comprendre les notations.  
 

j

f

x




se lit « dérivée partielle de f par rapport à sa j  ème variable ». Elle est moins claire que 

la notation j f .  

Par exemple, on prend 3 2( , )f x y x y  . Quand on écrit ( , )
f

x y
x




, les deux x  ne désignent pas 

la même chose : le premier exprime que l’on dérive par rapport à la première variable, et le 
second que l’on évalue cette fonction en ( , )x y .  

Calculer (3 , )
f

x y
x




, ( , )
f

x x
x




 et ( , )
f

y x
x




.  
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Définition : soit :f U   . On dit que f  est de classe 1C  sur U  si et seulement si les dérivées 
partielles de f existent et sont continues en tout point deU  .  
 
Propriétés : Soient , :f g U   . Soit  . On suppose que ,f g sont 1C sur U . Alors pour 

a U  et  1,j p :  

 f g  est 1C  sur U et 
 

( ) ( ) ( )
j j j

f g f g
a a a

x x x




   
 

  
. Ainsi, 1( , )C U  est un 

sous-espace vectoriel de l’espace des fonctions de U dans  .  

 f g  est 1C  sur U et 
 

( ) ( ) ( ) ( ) ( )
j j j

f g f g
a g a a f a a

x x x

  
 

  
 

 Si g ne s’annule pas sur U , alors 
f

g
est 1C  sur U .  

 Si f est à valeurs dans I   et que : I   est 1C sur I , alors f  est 1C sur U et 

   ( ) ( ) ' ( )
j j

f f
a a f a

x x




 


 


 

 Les fonctions polynomiales sont de classe 1C  sur p .  
 
 

Exemple : si 2 2( , ) ln( 1)g x y x y   , calculer ( , )
g

x y
x




.  

 
 
 
 
 
 
 
 

3) Développement limité d’ordre 1. Gradient et différentielle.  
 
Définition : soit :g U   . On suppose que 0 U . On écrit 

0
( ) ( )

h
g h o h


  ou plus 

simplement 
0

( ) ( )
h

g h o h

  lorsqu’il existe une fonction  définie de U dans   telle que 

0

, ( ) ( )

( ) 0
h

h U g h h h

h






  
 

 

 
Théorème (*) (développement limité d’ordre 1 ; admis) : soit :f U  . On suppose que f 

est de classe 1C  sur U . Alors f  admet un développement limité à l’ordre 1 au voisinage de 

tout élément 1( ,.., )pa a a U  .  

Plus précisément, pour 1 2( , ,..., ) p
ph h h h   tel que a h U  , on a :  

0
1

( ) ( ) ( ) ( )
p

i
h

i i

f
f a h f a h a o h

x



   

 .  
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Explication : si 1p  , on obtient 
0

( ) ( ) '( ) ( )
h

f a h f a h f a o h


    .  

On ajoute les contributions apportées par chacune des dérivées partielles.  
 
 
 
 
 
 
Exemple : on pose ( , ) cos 2f x y x y y  . Donner un développement limité à l’ordre 1 en 

(1,0)a  de la fonction f  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Corollaire : toute fonction de classe 1C sur U est continue sur U .  
 
 
 
 
 
 
Définition : soit Ua . Soit :f U   , de classe 1C . On appelle différentielle de f en a et on 

note )(adf  l'application définie de p  dans   par : si 1 2( , ,..., ) p
ph h h h  ,  

2
1

1 (( )( , . ), .., )
p

ip
i i

d
f

h af a h h h
x




 . On note aussi 
1

. (( ) )
p

i
i i

f
d a h ah

x
f






  

 
Remarques :  

 Si Ua est fixé, l’application 

1

:
(

( )
)

p

i

p

i i

df a
h

f
h a

x








 
 est une forme linéaire.  

 Si 1p  , on a ( )( ) '( )df a h h f a .  

 Le développement limité à l’ordre 1 de f s’écrit 
0

( ) ( ) ( ). ( )
h

f a h f a df a h o h


    .  
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Notation : pour  1,j p , on considère 
1

:
( ,..., )

p

j
p j

g
x x x




 
.  

Alors si pa , ( ). 1j jdg a h h . Cette quantité ne dépend pas de a . On note alors ( ) jdg a dx  

On a alors , ( ). .p
j jh dg a h dx h    

Avec cette notation, il vient 
1

, ( ). ( ) .
p

p
j

k j

f
h df a h a dx h

x


  

 , donc 
1

( ) ( )
p

j
k j

f
df a a dx

x




 .  

Il s’agit formellement d’une égalité d’applications linéaires.  
 
 
 
 
 
 
 
 
 
 
Définition (*) : soit 1( ,.., )pa a a U  . Soit :f U   . On suppose que f est de classe 1C  sur 

U . On appelle gradient de f  en a, et on note ( )f a le vecteur 
1

( )

( )
p

f
a

x

f
a

x

 
  
 
 
 

  

 . 

 
 
Propriété : on munit p  de sa structure euclidienne usuelle. Alors pour tout a U , pour tout 

1 2( , ,..., ) p
ph h h h  , on a ( ). ( ),df a h f a h  .  

Ainsi, 
0

( ) ( ) ( ), ( )
h

f a h f a f a h o h


     .  
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Exemple : Calcul du gradient et de la différentielle en (0,0)  et en (2,0) pour la fonction 
2 2( , ) 9f x y x y   , définie sur   2 2 2, , 9O x y x y     

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Remarque : On suppose a U et ( ) 0f a  , avec :f U   , de classe 1C  sur U .  

Soit ph , un vecteur unitaire. Soit g définie au voisinage de 0 par ( ) ( )g t f a t h  . Alors 

() ,( )h hD ff aa   . 

Ainsi, le vecteur gradient est colinéaire au vecteur unitaire h selon lequel la dérivée de f en a
est maximale, et de même sens.  
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4) Règle de la chaîne.  
 
Proposition (*, règle de la chaine) : soit U  un ouvert de p  et I  un intervalle de  . Soit 

:f U   , de classe 1C  sur U  et soient 1,..., px x  des fonctions dérivables sur I  telles que 

 1( ),. ., . , ( )px t x t Ut I  . Soit :g I   , avec pour t I ,  1( ) ( ),..., ( )pg t f x t x t . Alors 

:g I    est dérivable sur I , et on a  1
1

, '( ) ( ),..., ( ) ' ( )
p

p j
j j

f
t I g t x t x t x t

x


  

 .  

 
Remarque : on dérive ainsi comme une composée en se rappelant qu’il faut ensuite ajouter les 
composantes suivant les différentes directions.  
 
Idée de preuve pour 2p  . On fixe t I et on étudie ( )g t k pour k tel que t k I  .  

On pose 1 2( ( ), ( ))a x t x t .  

On note 1 1 2 2 1 2( ( ) ( ), ( ) ( )) ( , )h x t k x t x t k x t h h      .  

Alors 1 2
1 2

( ) ( ) ( ) ( ) ( ) ( ) ( )
f f

g t k g t f a h f a h a h a o h
x x

 
       

 
.  
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Exemples :  
 pour t , on considère ( ) (cos( ),sin( ))g t t t et f une fonction quelconque de classe 1C  

sur  .  Calculer la dérivée de ( ) (cos ,sin )h t f t t .  

 pour t , on considère ( ) ( ,2 )k t f t t , où f  une fonction quelconque de classe 1C  

sur 2 .  Calculer la dérivée de k  sur   en fonction des dérivées partielles de f .    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Corollaire : on suppose ici que U est un ouvert convexe de p . Soit :f U   , de classe 1C
sur U . Alors f est constante si et seulement si , ( ) 0a U f a     (ou encore 

 1, , 0
j

f
j p

x


  


).  

 
Preuve : on procède par double implication. 
  Soient 1 1( ,..., ), ( ,..., )p pa a a b b b U   et ( ) ( ) (1 )g t a t b a t b t a U        pour 

 0,1t . On pose 1 1 1( ) ( ) ( ( ),..., ( ))p p ph t f g t f a t b a a t b a      .  
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Remarque : le résultat n’est vrai que sur un ouvert convexe. On prend *U   , 1p  et 

1
( ) arctan( ) arctanf t t

t
    
 

 pour *t . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Corollaire  : soit U  un ouvert de p  et   un ouvert de n  Soit :f U   , de classe 1C  sur 

U  et soient 1,..., px x  des fonctions 1C  sur  . On suppose que 1( ,..., )na a a   , 

 1( ),..., ( )px a x a U . Alors l’application  1 1 1 1

:
( ,..., ) ( ,..., ),..., ( ,..., )n n p n

g
a a f x a a x a a






 est 

de classe 1C  sur   et    1 1
1

( ,..., ) , 1, , ( ) ( ),..., ( ) ( )
p

j
n p

ji j i

xg f
a a a i n a x a x a a

a x a

 
     

    

 
 
Cas particulier (*) : soit U  un ouvert de 2 et :f U   , de classe 1C  sur U .  Soit   un 

ouvert de 2 . On considère les fonctions :
( , ) ( , )

x
u v x u v





et :

( , ) ( , )
y

u v y u v





 telles que 

( , ) ,( ( , ), ( , ))u v x u v y u v U   . On suppose que x et y sont de classe 1C sur  . 
On définit sur   la fonction g par ( , ) ( ( , ), ( , ))g u v f x u v y u v .  

Alors g est de classe 1C sur  . De plus, :  

    ( , ) ( , ), ( , ) ( , ) ( , ), ( , ) ( , )
g f x f y

u v x u v y u v u v x u v y u v u v
u x u y u

    
 

    
 

   ( , ) ( , ), ( , ) ( , ) ( , ), ( , ) ( , )
g f x f y

u v x u v y u v u v x u v y u v u v
v x v y v

    
 

    
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Preuve  rapide du cas particulier : on étudie la fonction partielle  
( , ) ( ( , ), ( , ))( ) g u v f xh u vu y u v . On calcule la dérivée de h à l’aide de la règle de la chaine.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Exemples (*) :  

 Soit 2 2( , ) ( , )h x y f x y x y  , où f est de classe 1C  sur 2 , à valeurs réelles. Calculer 

les dérivées partielles de h.  
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 Soit f de classe 1C  sur 2 , à valeurs réelles. Pour 2( , )x y   , on note 
cos

sin

x r

y r





 

 

(coordonnées polaires). Soient (cos ,sin )ru    et ( sin ,cos )u     

Pour ,r   , on pose ( , ) ( cos , sin )g r f r r    

Calculer ( , )
g

r
r




 et ( , )
g

r 




.  

Montrer, lorsque 0r  , la relation 
1

( , ) ( , ) ( , )r

g g
f x y r u r u

r r  


 
  

 
 (expression 

du gradient dans le repère polaire).  
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 21

Notations : on considère ( , ) ( ( , ), ( , )) ( , )T g u v f x u v y u v f x y   . Alors pour un physicien, la 
grandeur physique est plus importante que la fonction correspondante : on la note aussi bien T
comme fonction de ( , )u v  que de ( , )x y .  
Si on prend par exemple ( , )x u v u v  , ( , )y u v u v  et ( , )f x y xy , on a pour ,a b  : 

( , )f a b ab  et ( , ) ( )g a b a b ab  .  
Les fonctions f et g ne sont pas identiques et les mathématiciens ne les notent pas pareil. En 

physique, on peut écrire    ( , ) ( , ), ( , ) ( , ) ( , ), ( , ) ( , )
T T x T y

u v x u v y u v u v x u v y u v u v
u x u y u

    
 

    
, 

ou encore 
T T x T y

u x u y u

    
 

    
 (et de même 

T T x T y

v x v y v

    
 

    
).  

 
 
 
 
 
 
 
 
 
 
 
 

5) Dérivées partielles d’ordre 2 
 

Définition : soit  2,3p  et pU   . Soit :f U    et 1 ,j k p  . On suppose que 
j

f

x




 

est définie sur U . Lorsqu’elles existent, les dérivées partielles de 
j

f

x




 se notent 
2

k j

f

x x


 

 ou 

, ( )k j f . Ici, on dérive d’abord par rapport à jx  puis par rapport à kx .  

 
Définition : soit :f U   . On dit que f est de classe 2C sur U si et seulement si toutes ses 
dérivées partielles d’ordre 2 existent et sont continues sur U .  
 
 

Exemple : calculer 
2 f

x y


 

 et  
2 f

y x


 

 si 3 2( , ) x yf x y x e   
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Théorème (Schwarz-admis) : Soit :f U   . On suppose que f est de classe 2C sur U . Alors 

)()(,
22

a
xy

f
a

yx

f
Ua








 . 

 
Définition (*) : Soit :f U   une application de classe 2C sur U . Soit a U . La matrice 

Hessienne de f  en a , notée ( )fH a est définie par    
2

,
, 1, , ( ) ( )f i j

i j

f
i j p H a a

x x


  

 
.  

Avec le théorème de Schwarz,  ( )f pH a S  . 

 
Exemples :  

1) On prend 
2

3 2
:
( , )

f
x y x y




 
. On pose (1,1)a  . Déterminer  ( )f a  et ( )fH a  

2) On prend 
2

:
( , ) xy

f
x y e




 
. On pose (0,0)a  . Déterminer  ( )f a  et ( )fH a  
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Théorème (*) (Formule de Taylor-Young à l’ordre 2 ; admis) : soit :f U   . On suppose 

que f est de classe 2C  sur U . Alors f  admet un développement limité à l’ordre 2 au voisinage 

de tout élément 
1

p

a

a U

a

 
 

  
 
 

 .  Plus précisément, pour 
1

p

p

h

h

h

 
 

  
 
 

   tel que a h U  , on a :  

2

0

1
( ) ( ) ( ), ( ) ( )

2
T

fh
f a h f a f a h h H a h o h


      .  

On rappelle que
2

0
( ) ( )

h
g h o h


  signifie qu’il existe une fonction  définie de U dans   telle 

que 

2

0

, ( ) ( )

( ) 0
h

h U g h h h

h






  
 

 

 
Remarque : ce développement limité à l’ordre 2 s’écrit aussi : 

2

0

1
( ) ( ) ( ), , ( ) ( )

2 fh
f a h f a f a h h H a h o h


       

 
Exemples :  

1) Ecrire cette formule dans les cas 1p  et 2p   

2) On prend 3 2( , )f x y x y . Donner le développement limité à l’ordre 2 de f en (1,1)a   

3) Même question pour ( , ) x yf x y e  en (0,0)a  . 
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4) Résolution d’équations aux dérivées partielles (EDP,HP).  
 
Exemple : soit 2 2:f   . Trouver les fonctions f  de classe 1C  sur 2  de l’équation 

0
f

x





.  
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Exemple : Equation de propagation des ondes à une dimension : soit 0c   fixé.  Trouver 

toutes les applications 2:f   , de classe 2C  telles que 
2 2

2 2 2

1
, , ( , ) ( , ) 0

f f
x t x t x t

x c t

 
   

 
  (on posera u x ct   et v x ct  ).  

 
On prend f une fonction quelconque de classe 2C  sur 2  et on pose ici 

( , ) ( , ) ( , )f x t g u v g x ct x ct    .  

On a alors ( , ) ( , )
2 2

u v u v
g u v g

c

 
  et g est 2C  sur 2 .  
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A) Extrema d’une fonction de plusieurs variables.  
 

1) Extremum global 
 
Définition : soit D  une partie quelconque de p , et :f D   . On dit que f admet un 

maximum global égal à ( )f a  (resp. un minimum global) en un point a D  si et seulement si 
, ( ) ( )x D f x f a   (resp. , ( ) ( )x D f x f a   ). f  admet un extremum global en a D si et 

seulement si elle admet un maximum ou un minimum global en a .  

 
 
Rappel : théorème des bornes atteintes (*) : soit pD   . On suppose que D est fermé et 
borné. Soit :f D   une fonction continue. Alors f est bornée et atteint ses bornes (elle 
admet donc un minimum et un maximum global sur D ).  
 
Remarque : pour montrer qu’une fonction :f D    n’admet pas de maximum global sur D

, il suffit de trouver une suite ( )nx  d’éléments de D telle que ( )n
n

f x

  . 
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Exemples :  
1) On considère 3 3( , ) 2 3 1f x y x y xy    . Montrer qu’elle n’a pas d’extremum 

global sur 2 . Montrer qu’elle possède un maximum et un minimum global sur 

 2( , ) , 0, 0, 1D x y x y x y      . On ne demande pas de les calculer.  

2) On peut utiliser le théorème des bornes atteintes même si f n’est pas définie sur une 

partie fermée et bornée. Par exemple, on prend 
2 2

2

( )
:
( , ) x y

f
x y xy e 





 
.  

Montrer que f admet un maximum global sur 2  (on pourra passer en polaires et 
considérer ( cos ( ), sin ( ))f r r  ).  
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3) Extremum local. Point critique.  
 
Définition : soit D  une partie de p , et :f D   . On dit que f admet un maximum local en 

un point a D  si et seulement si 0, ( , ), ( ) ( )x D B a f x f a       .  

Ce maximum local est strict si et seulement si  0, ( , ) \ , ( ) ( )x D B a a f x f a       . 

De même pour un minimum local.  
 

 
 
Définition (*) :  Soit de nouveau U  un ouvert de p , et :f U    et f une fonction de classe 

1C sur D . Soit a D . a  est un point critique si et seulement si ( ) 0f a  .  
 
Rappels :  

 On suppose que I  est un intervalle ouvert de   soit f une fonction de I  dans  , 
dérivable sur I . Si f admet un extremum local en un point a , alors '( ) 0f a  . 

 Ce résultat devient faux si on ne suppose plus que I est un ouvert.  
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Proposition (*) : soit U un ouvert de p et :f U   . On suppose que f  est de classe 1C  

sur U et qu’elle admet un extremum local en a U .  
Alors a est un point critique (on a ( ) 0f a  , c’est-à-dire que toutes les dérivées partielles 
s’annulent en a ).  
 
Preuve : on traite le cas d’un minimum local. Les fonctions partielles aussi admettent des 
extrema. Donc leurs dérivées s'annulent.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Remarque (*) : cette condition n’est pas suffisante. On peut avoir un point critique qui n’est 
pas un extremum local. C’est le cas d’un « point col » ou d’un « point selle ».  
On a alors un maximum local dans une direction et un minimum local dans une autre.  
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Exemple : on prend ( , )f x y x y  en (0,0)a  . 
 
 
 
 
 
 
 
 
Proposition (*) : soit U un ouvert de p et :f U   . On suppose que f  est de classe 2C  

sur U et qu’elle admet un point critique en a U  (c’est-à-dire que ( ) 0f a  ). Alors : 

1) Si  ( )f nH a S    (c’est-à-dire   *( )fSp H a   ), alors f atteint un minimum local 

strict en a  .  

2) Si  ( )f nH a S   (c’est-à-dire  ( )fSp H a   , ou encore qu’il existe une valeur 

propre strictement négative de ( )fH a ), alors f  n’admet pas de minimum local en a .  

 
Preuve : avec le développement limité d’ordre 2.  
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Corollaire : soit U un ouvert de p et :f U   . On suppose que f  est de classe 1C  sur U

et qu’elle admet un point critique en a U  (c’est-à-dire que ( ) 0f a  ). Alors : 

1) Si   *( )fSp H a   , alors f atteint un maximum local strict en a  .  

2) Si  ( )fSp H a   , alors f  n’admet pas de maximum local en a  

 
Preuve : non faite. C’est pareil que celle du résultat précédent. 
 
Remarque (*) : sous les mêmes hypothèses :  

 Lorsque ( )fH a possède une valeur propre strictement négative et une autre strictement 

positive, il n’y a pas d’extremum local en a . 
 Si toutes les valeurs propres de ( )fH a sont strictement positives, il y a un minimum 

local strict en a .  
 Si toutes les valeurs propres de ( )fH a sont strictement négatives, il y a un maximum 

local strict en a .  

 Lorsque  ( )fSp H a   (ou que  ( )fSp H a   ), et que 0 est valeur propre de 

( )fH a , on ne peut pas conclure et il se peut qu’il y ait un extremum local ou pas. Il faut 

alors étudier directement la fonction au voisinage du point critique. 
 
Proposition (*) : cas particulier en dimension 2. Soit U un ouvert de 2 et :f U   . On 

suppose que f  est de classe 2C  sur U et qu’elle admet un point critique en a U  (c’est-à-dire 
que ( ) 0f a  ). Alors :  

 Si det( ( )) 0fH a  , f n’admet pas d’extremum local en a .  

 Si det( ( )) 0fH a   et ( ( )) 0fTr H a  , alors f admet un minimum local strict en a . 

 Si det( ( )) 0fH a   et ( ( )) 0fTr H a  , alors f admet un maximum local strict en a . 

 
Preuve :  
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Méthode (*) : pour chercher les extrema locaux ou/et globaux de :f D   , où D  est une 

partie de 2 (ceci se généralise à p pour 2p  ), on peut commencer par dessiner D . On note 

( )Fr D la frontière (le bord) de D  s’il existe ( ( )Fr D  est vide si D est ouvert). On pose 
\ ( )U D Fr D  qui est un ouvert. 

1) On cherche les points critiques a U . Ce sont les seuls extrema possibles pour f dans 

U .  Si on veut savoir si f possède un extremum local en a , on peut utiliser ( )fH a .  

2) On peut montrer l’existence d’extrema globaux avec le théorème des bornes atteintes 
(si D est un fermé borné, ou qu’on se place sur un sous-ensemble de D ).  

3) S’il y a lieu, on cherche le maximum et le minimum de f sur ( )Fr D . On peut comparer 
avec les valeurs aux points critiques pour déterminer les extrema globaux de f  sur D .  

 
Exemples :  

1) Pour 2( , )x y  , on pose 4 4( , ) 4f x y x xy y   . Etudier le nature des extrema 

locaux de f sur 2 .  

2) Trouver les extrema globaux de la fonction définie par : 2 2( , ) 2f x y x x y    sur 

 2 2 2(0,1) ( , ) , 1D D x y x y     .  

3) Trouver les extrema globaux de 2 2( , ) ( , ) 3 ( ) 1x y g x y x y x y xy       sur 
2 et sur  2( , ) , 1D x y x y    .  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


