13-Fonctions de plusieurs variables

A) Fonctions vectorielles

Dans tout ce paragraphe, / désigne un intervalle de R , non vide et non réduit a un point.
Soit 7 e N". On s’intéresse a I’étude des fonctions de la forme ' : 7 — R”

1) Dérivation
Définition : soit f:/ — R". Soit ¢, € / . On dit que f est dérivable en ¢, si et seulement si son
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t—t,

taux d’accroissement 7'(¢) = admet une limite finie quand ¢ tend vers ¢,. Cette

limite est alors notée ().

Remarque : la dérivabilité et la valeur de f''(#,) ne dépendent pas du choix de la norme dans
R".

Propriété : soit /:/ — R".Pour re I, onnote f(t)=(f(t),f,(1),.... f,(¢)). Soit 7, € I . Alors
f est dérivable en ¢, si et seulement si pour tout k €[1,n], f, est dérivable en ¢, et on a alors

f'@= ( L@, 1'@),.n f,, '(t)) (on peut dériver coordonnée par coordonnée).

Preuve :



Remarque : en identifiant une matrice M € M, (R)avec un élément de R" (constitué de ses

n’ coefficients), on peut étendre les résultats précédents aux applications a valeurs dans
M, (R) , et plus généralement dans n’importe quel espace vectoriel normé de dimension finie.

Exemples :
e Onprend f(¢)= (cos(t),sin(t)). Calculer f'(¢) pour teR.
cos(t) —sin(z)

e Onnote R(?)= (sin(t) cos(?)

j . Montrer que R est dérivable et calculer R'.

Propriété : soit f:/ —R". Soit t, €. Soit D={heR,t,+hel}. Alors f estdérivable en
t,siet seulement si f admet un développement limité a I’ordre 1 en ¢, c’est-a-dire qu’il existe
un vecteur a e R"et ¢: D —>R" telsque Vhe D, f(t,+h)=f(t,)+ha+he(h) et 8(h)h—>00 .
Onaalors f'(t,)=a.

On note aussi f(t,+h)= f(t,)+h f'(t,)+o(h)

Preuve rapide : on se raméne aux fonctions coordonnées.



Exemple : Soit f(¢) = (e’,ln(l —t)) . En donner un développement limité a I’ordre 1 en 0.

Définition : soit f:/ — R". Alors f est dérivable sur / si et seulement si elle est dérivable en

tout pointde /. f estde classe C' sur [ si et seulement si elle est dérivable sur / et que f'est
continue sur / .

Interprétation cinématique : si on prend n=2(ou n=3), et que le paramétre ¢ désigne le
temps, f(¢)=(x(2),y(¢))désigne la position d'un mobile ponctuel a I'instant . f"'(¢) est alors le
vecteur vitesse instantanée du mobile.

2) Opérations sur les fonctions dérivables.

Propriété : soient f,g:/ — R". Soient «, f € R.On suppose f et g dérivables sur /. Alors
af +Bgestdérivable surl et (af +pg) =af'+pg'

Proposition : soient f:/ — R" et L:R" — R”, une application linéaire. On suppose que f
est dérivable sur /. Alors Lo f est dérivable sur / etpour t €/, (L of)'(t) = L(f'(t)).

Preuve : on regarde le taux d’accroissement et on utilise la continuité des applications linéaires.



Exemples : Soit AeM, (R) et PeGL,(R). Pour reR, on pose M(t)=1,+1" 4,
gt)= tr([n +1 A) et h(t)=PM(t)P~". Montrer que g et /& sont dérivables sur R et calculer

leurs dérivées.



Proposition : soient f:/ > R" et ¢:J — I, ou Jestun intervalle de R. On suppose que f
est dérivable sur / et que ¢ est dérivable sur J. Alors f o est dérivable sur J et pour tout

ted, (fo0)®)= 1 (@®)e'®).

Preuve rapide : on écrit f o @(¢) pour ¢ € J a I’aide des coordonnées.

Exemple : Soit AeM, (R) . Pour teR, on pose f(t)=A+tl, et g(¢t)= f(sin(¢)).
Déterminer g'(¢f)pour teR.

Propriété : soient f,g:7 —> R".Soit B:R"xR" — R”, bilinéaire.
On pose alors pour t €/ : h(t) = B( 1), g(t)). On suppose [, g dérivables sur /. Alors 4 est
dérivable sur [ etona Viel,h'(t)=B(f(1),g(t))+B(f(1).g'(1)).

Preuve : On sait que B est continue car elle est bilinéaire.

Soit T'(f) =

h(t)~h(t,) _B(f(1).8(1)-B(f(1).8()) N B(f(1).8(t,))—B(f(t).8(t))
t— t—

t—t, t t,



Exemple : Pour teR, on pose f(t)=M(t)N(t) et g(t)=M">(t), avec, pour teR,
M(t),Nt)eM, (R) . On suppose que ¢+ M(¢) et t — N(t)sont dérivables sur R . Justifier
que f', g sont dérivables sur R et calculer f'(¢) et g'(¢).

Propriété : R"est muni de son produit scalaire usuel noté <,> Soient f,g:1 — R"deux

fonctions dérivables sur /. Soit B la base canonique de R”.
Alors I’application ( f ,g> définie sur [ par < 1, g>(t):< 1), g(t)>est dérivable sur 7 et

(f.8)O=(f"®).g0)+(f(1),g'®)).

Exemple : On se place dans (]R”,(,}) euclidien usuel. On considére f : / — R" une fonction

dérivable sur 7, ne s’annulant pas sur /. Pour f €/, on pose g(¢) = || f(@) || Montrer que g

est dérivable sur / et calculer g'.



Propriété : soit p e N'. soient f,,.., S, I —R" des fonctions dérivables.

Soit M :(R")" >R, p-linéaire. Pour ¢ € I, on pose h(t)=M(f,(t)..... £, (1))

Alors hest dérivable sur [ et :

Vtel,h'(t) = M(£,'©), /,(O)-.. [, O) + M (f,(), 1 '@).... [, () + .. £ M ([, (D), [5(O)-... £, (D))

Remarque : on a ainsi une somme de p termes, et on dérive un a chaque fois en laissant les
autres inchangés.

Cas du déterminant : Soit B une base de R" et f|,.., f, : I = R" des fonctions dérivables.
Pour t €1, on pose h(t) =det,(f (?),..., f,(¢)). Alors hest dérivable sur / etona:

h'(t) = dety (£, (), f5(0)-... £, () +det, (f,(0), 1, ' (O)-... [, (D) +... + det, (f,(D),.... £, (1)

Exemple : soit A€M, (R).On pose pour R : h(t)=det(I,+tA4).
Onnote B=(E,..,E,)labase canonique de R"et (C,,...,C,) les colonnes de 4.
Ainsi, h(t) =det, (E, +¢C,,...E,+tC,) . Montrer que h(t) = L+ tr(4)t +o(t)

Définition : soit f:/ — R". Soit k € N. Alors f est de classe C* sur [ si et seulement si elle

est k fois dérivable sur / et que £ est continue sur 7 .
Sionnote f(£)=(f,), f,(t),....[,(t)) pour €, onaf* ()= (fl""(t),ﬁ‘“(t),...,ﬁ“(t)).

Elle est de classe C” sur [ si et seulement si elle est de classe C* sur 7 pour tout k € N .



B) Dérivées partielles

Dans la suite, on pose K =Rou C.

L’étude d’une fonction de R” dans R" se ramenant a celle de ses coordonnées, on s’intéresse
ici aux fonctions de R” dans R.

R” est muni d’une norme notée || || que I’on peut choisir.

Les résultats sur les espaces vectoriels normés s’appliquent donc.

On considére U un ouvert de R” et f:U — R, une application.

1) Continuité des fonctions de plusieurs variables

Rappels :
e SiaeU, festcontinueen a sietseulementsi f(x)— f(a) (autrement dit, pour
X—a

toute suite (U,) d’éléments de U telle que U, — a,ona f(U,) = f(a)).
n—>+w n—+o0
e Pour montrer qu’une fonction n’admet pas de limite en a, il suffit de trouver deux suites

(U,) et (V,)qui tendent vers amais telles que ( f (Un)) et ( f, ))aient des limites

différentes.

Exemples : Etudier la continuité des fonctions suivantes sur R”:
2

o f(xy)=—2— si(x,)#(0,0) etf(0,0)=0.
X +y

2

X .
o g(ny)=—2— si(xy)=(0,0) ctg(0,0)=0
X +y




Remarque : Soit S= {(x, y,z) eUxR,z= f(x, y)}. S est une surface qui représente
graphiquement la fonction f .

2) Définition des dérivées partielles

Définition : Soit veR” et gdéfinie au voisinage de 0 par g(¢)= f(a+¢v). On dit que f
admet une dérivée en a suivant le vecteur vsi et seulement si g est dérivable en 0. On note
alors D, f(a)=g'(0). C’est la dérivée de f en a suivant le vecteur v.

R’ >R

Exemple : on prend f: . Déterminer la dérivée de f suivant le vecteur v=(1,1) en
(x,y) > xy

a=(2,).



Définition : Soit a =(ay,.,a,)eU. La j—éme fonction partielle associce a fen a est la

fonction f, définie par f,(¢)= f(a,,...a, ,t,a;,,..,a,).

b

Définition : Soit a =(a,,..,a,) €U .On dit que f admet une dérivee partielle en a par rapport
a sa j —eme variable si et seulement si la j—éme fonction partielle associée a f en a, définie
lorsque (4,,.-,a; ,,t,a,,,.,a,)eU vpar f,(t)=f(a,..a, .t,a,,,.,a,), est dérivable en a, .

S 0
Lorsque cette dérivée existe, on la note 0, f(a) ou ai(a) .
. .
J

Remarque : lorsqu’elle existe, la dérivée partielle de f en a par rapport & sa j — éme variable

est la dérivée de f suivant le vecteur e, ou B = (el,...,ep) est la base canonique de R”.

Exemples :
e Soit f(x,y,z)=x"+e”sin(x). Déterminer les dérivées partielles de f par rapport a
chacune de ses variables.
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2.2
al si (x,y)#(0,0) etg(0,0)=0 . Montrer que g admet des

e soit g(x,y)= —
X +y

dérivées partielles en tout point de R* et les calculer.

Remarque (*) : essentiel pour bien comprendre les notations.

sl se lit « dérivée partielle de f par rapport a sa j— éme variable ». Elle est moins claire que
X
J

la notation 0, f .

Par exemple, on prend f(x,y)=x"—y*. Quand on écrit Zl(x, ), les deux x ne désignent pas
x

la méme chose : le premier exprime que I’on dérive par rapport a la premiere variable, et le
second que 1’on évalue cette fonction en (x, y).

Calculer g(?a)c,y) , al()c,)c) et al(y,)c).
Ox Ox Ox
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Définition : soit  :U — R.Onditque f estde classe C' sur U si et seulement si les dérivées
partielles de f existent et sont continues en tout point deU .

Propriétés : Soient f,g:U — R . Soit A€ R. On suppose que f,g sont C'sur U . Alors pour
acU etje[[l,p]]:

A2 = L s . A 0Byt

J J J
sous-espace vectoriel de I’espace des fonctions de U dans R.

(fg)m g(a) f(a>+f(a)ag<)

j j

e f+Ag est C' sur Uet

e fgestC'surUet

e Si gne s’annule pas sur U, alors iest C'sur U.

g
e Si festavaleursdans / c Retque ¢:7 —Rest C'sur I, alors o fest C'sur U et
pof
20 ) )= 2 @y (@)

J

e Les fonctions polynomlales sont de classe C' sur R”.

Exemple : si g(x,y)=In(x’+y” +1), calculer g—g(x, ¥).
X

3) Développement limité d’ordre 1. Gradient et différentielle.

Définition : soit g:U —> R. On suppose que 0eU. On écrit g(h)hzoo(”h”) ou plus
simplement g(h)hzoo(h) lorsqu’il existe une fonction ¢définie de U dans R telle que

VheU,g(h)=|h|e(h)
£(h) =0

Théoréme (*) (développement limité d’ordre 1 ; admis) : soit f:U — R. On suppose que f
est de classe C' sur U . Alors f admet un développement limité a I’ordre 1 au voisinage de
tout ¢lément a =(a,,..,a,) U .

Plus précisément, pour &= (h,,h,,...,h,) e R” telque a+h e U,ona:

fa+h = f@+3hL@-+o(la).

12



Explication : si p =1, on obtient f(a+h) = f@)+hf'(@)+o(h).

On ajoute les contributions apportées par chacune des dérivées partielles.

Exemple : on pose f(x,y)=xcosy+2y. Donner un développement limité¢ a I’ordre 1 en
a =(1,0)de la fonction f

Corollaire : toute fonction de classe C'sur U est continue sur U .

Définition : soit @ € U . Soit f:U — R, de classe C'. On appelle différentielle de f'en a et on
note df(a) l'application définie de R” dans R par: si h=(h,h,,...h)eR’,

ox, i=1

1

df (@), hyseh) = Zp:h,. Y (4). On note aussi df (a).h = Zp:h,. Si(a)
i=1 xi

Remarques :
R” >R
e Si a e Uest fixé, I’application df (a): Lo of est une forme linéaire.

h—)Zh,.g(a)

i=1 i

e Sip=l,onadf(a)h)=hf"(a).
e Le développement limité a ’ordre 1 de f s’écrit f(a+h) = f(a)+df(a)h+o(h).

13



R” >R
Notation : pour j €[l, p], on considére g, : .
7 (X, X)X,
Alorssi a € R”, dg;(a).h =1h, . Cette quantit¢ ne dépend pas de a . On note alors dg(a) = dx;,
OnaalorsVheR”,dg;(a)h=dx;h
D 2 of 2 of
Avec cette notation, il vient Vi e R”,df (a).h = za—(a)dxj ., done df (a) = Z— (a)dx; .

k=1 OX; k=1 OX;
Il s’agit formellement d’une égalité d’applications linéaires.

Définition (*) : soit a =(a),..,a,) €U . Soit f:U — R. On suppose que fest de classe C' sur

f T

U . On appelle gradient de f en a, et on note Vf(a)le vecteur

~—(a)

p

Propriété : on munit R” de sa structure euclidienne usuelle. Alors pour tout a € U , pour tout
h=(h,hy,...h,)€R” ona df(a).h=(Vf(a),h).

Ainsi, f(a+h) = f(a)+ (Vf(a),h)+o(|h).

14



Exemple : Calcul du gradient et de la différentielle en (0,0) et en (2,0)pour la fonction

F(x, ) =J9—x> =y , définie sur OZ{(x,y)e]Rz,xz ,y? <9}

Remarque : On suppose a €U et Vf(a)#0, avec f :U - R, de classe C' sur U .

Soit & € R”, un vecteur unitaire. Soit g définie au voisinage de 0 par g(¢) = f(a+th). Alors
D,f(a)=(Vf(a),h).

Ainsi, le vecteur gradient est colinéaire au vecteur unitaire /4 selon lequel la dérivée de fen a
est maximale, et de méme sens.

15



4) Reégle de la chaine.

Proposition (*, régle de la chaine) : soit U un ouvert de R” et / un intervalle de R. Soit
f:U >R, declasse C' sur U et soient X, X, des fonctions dérivables sur [ telles que
Vtel,(x,(0)....x,(t))eU . Soitg: 1 >R, avec pour e, g(t)=f(x(t)....x,(1)). Alors
p
g:1 >R estdérivablesur /,etona Viel, g'(t)= Zg(xl(t),...,xp(t))xj "(1).

J=1L 2

Remarque : on dérive ainsi comme une composée en se rappelant qu’il faut ensuite ajouter les
composantes suivant les différentes directions.

Idée de preuve pour p=2.On fixe € [ et on étudie g(t+k)pour ke Rtelque t+kel.
On pose a = (x,(?),x,()) .
Onnote h=(x,(t+k)—x,(t),x,(t +k)—x,(¢)) = (h,h,).

Alors g(t+k)—g(t)=f(a+h)—f(a)=h %(a) +h, %(a) +o(|A))-

16



Exemples :

pour ¢ € R, on considére g (¢) = (cos(¢),sin(¢)) et fune fonction quelconque de classe C'
sur R. Calculer la dérivée de 4 (f) = f(cost,sint).

e pour R, on considére k(t)= f(¢,2t), ou f une fonction quelconque de classe C'

sur R*. Calculer la dérivée de k sur R en fonction des dérivées partielles de f.

Corollaire : on suppose ici que U est un ouvert convexe de R” . Soit f:U — R, de classe C"
sur U. Alors fest constante si et seulement si VaeU,Vf(a)=0 (ou encore

vj e[[l,p]],%:O).

J

Preuve : on procede par double implication.
< Soient a=(a,...a,),b=(b,....b))eUet g(t)=a+t(b—a)=tb+(1-t)acU pour
te [0,1]. On pose A(t) = fog(t)= f(a +i(b —a),.,a,+tb,—a,)).

17



Remarque : le résultat n’est vrai que sur un ouvert convexe. On prend U =R", p=let

f(¢) = arctan(¢) + arctan Gj pour teR".

Corollaire : soit U un ouvert de R” et Q un ouvert de R” Soit f:U — R, de classe C' sur
U et soient x,..,x, des fonctions C' sur Q. On suppose que Va=(a,..,a,)e,
Q—->R

(al,...,a”)—>f(x1(a1,...,a )seees X, (@5.0s0 ))

()c1 (a),...,xp(a)) eU . Alors I’application g: est

de classe C' sur Q et Va=(q,,...,a,) e Q,Vie[l, n]] (a) Z (xl(a) , X (a)) al (a)

Cas particulier (¥) : soit U un ouvert de R*et f:U — R, de classe C' sur U. Soit Q un
2 - 1 . Q->R Q>R
ouvert de R°. On considére les fonctions x: et y: telles que
(u,v) = x(u,v) (u,v) = y(u,v)
Y (u,v) € Q,(x(u,v), y(u,v)) € U . On suppose que xet ysont de classe C'sur Q.
On définit sur Q la fonction g par g(u,v) = f(x(u,v), y(u,v)).

Alors gestde classe C'sur Q. De plus, :

( ,V) = f(x(u v), y(u, v))—(u v)+—J;(x(u v), y(u, v))ay (u,v)
( ,V) = f(x(u v), y(u, v))—(u v)+é(x(u v), y(u, v)) (u V)

18



Preuve rapide du cas particulier : on étudie la fonction partielle
h(u) = g(u,v)= f(x(u,v),y(u,v)). On calcule la dérivée de / a I’aide de la reégle de la chaine.

Exemples (¥) :
e Soit h(x,y)=f(x>+y*,xy), ot fest de classe C' sur R, a valeurs réelles. Calculer
les dérivées partielles de 4.

19



x=rcos@

e Soit fde classe C' sur R?, a valeurs réelles. Pour (x,y)eR” , on note { .
y=rsinf

(coordonnées polaires). Soient u, = (cos@,sind) et u, =(—sind,cosb)
Pour 7,0 e R, on pose g(r,0) = f(rcosé,rsinf)

Calculer a—g(r,¢9) et a—g(r,(9).
or 06

Montrer, lorsque r =0, la relation Vf(x,y)= Z—g(r, Ou, + l((z—‘g(n 0)u, (expression
r r

du gradient dans le repére polaire).

20



Notations : on considere T = g(u,v) = f(x(u,v), y(u,v)) = f(x,y). Alors pour un physicien, la
grandeur physique est plus importante que la fonction correspondante : on la note aussi bien T
comme fonction de (u,v) que de (x,y).

Si on prend par exemple x(u,v)=u+v, y(u,v)=uv et f(x,y)=xy, on a pour a,beR :
f(a,b)=ab et g(a,b)=(a+b)ab.
Les fonctions f et gne sont pas identiques et les mathématiciens ne les notent pas pareil. En

physique, on peut écrire (u V)= (x(u v), y(u, v)) (u v)+5(x(u V), y(u, v)) (u V),

ou encore 8_T = 8_T6_x 8T 6y (etde m 6T = a_T@Jra_Ta_y

ou ox ou Oy ou “ov xov dypov

5) Dérivées partielles d’ordre 2

Définition : soit p e[[2,3]] et UcR”. Soit f:U >R et 1< j,k < p. On suppose que S—f

X,

J
e , . L, ) of o’ f

est définie sur U . Lorsqu’elles existent, les dérivées partielles de 6_ se notent

X; o0x0x,

ou

0, ,;(f) . Ici, on dérive d’abord par rapport a x; puis par rapport a x; .

Définition : soit f:U — R. On dit que f est de classe C*sur U si et seulement si toutes ses
dérivées partielles d’ordre 2 existent et sont continues sur U .

2 2
O o OF

Si , — 3 x+2y
ooy & o S en)=xe

Exemple : calculer
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Théoréme (Schwarz-admis) : Soit /:U — R . On suppose que fest de classe C*sur U . Alors

2 2
Van,af(a):af(a).
oxoy 0yox

Définition (*) : Soit f:U — Rune application de classe C*sur U . Soit a €U . La matrice

82
= A (a).
i 8xiaxj

Hessienne de / en a, notée H ,(a) est définie par Vi, j e [[l,p]],(Hf (a))
Avec le theoréme de Schwarz, H (a)e S, (R)

Exemples :

R* >R , .
1) Onprend f: , ,-Onpose a=(l1). Déterminer V (a) et H (a)
(xa J’) —>X Yy . .
R’ >R .
2) Onprend f:°  _.Onpose a=(0,0). Déterminer V,(a) et H(a)
(5,3) > €” | |

22



Théoréme (*) (Formule de Taylor-Young a ’ordre 2 ; admis) : soit f/:U — R . On suppose
que festde classe C* sur U . Alors f admet un développement limité a 1’ordre 2 au voisinage

a, hy

de tout élément a =| : |eU. Plus précisément, pour h=| : |eR” telque a+h € U,ona:
a h

P P
1

fla+h) = f(a)+<Vf(a),h>+§hTH S(@h+o(|n]).

On rappelle que g(h) h=00(||h||2) signifie qu’il existe une fonction & définie de U dans R telle

vheU,g(h) =|h| e(h)
que
&(h) =0

Remarque : ce développement limité a 1’ordre 2 s’écrit aussi :

fla+h) = f(@)+(Vf(a),h)+ %<h H (@)h)+o([A])

Exemples :
1) Ecrire cette formule dans les cas p=1let p=2

2) Onprend f(x,y)=x"y*. Donner le développement limité a ’ordre 2 de fen a=(1,1)
3) Méme question pour f(x,y)=¢e"" en a=(0,0).
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4) Résolution d’équations aux dérivées partielles (EDP,HP).

Exemple : soit f:R>—R*. Trouver les fonctions f de classe C' sur R*> de I’équation

Iy,
Oox

24



Exemple : Equation de propagation des ondes a une dimension : soit ¢ >0 fixé. Trouver

toutes les applications f:R* >R, de classe C? telles que

2 2
Vx,teR,a {(x,t)—%a {(x,t):O (on posera u=x+ct et v=x—ct).
Ox ¢ ot

On prend fune fonction quelconque de classe C* sur R’ et on pose ici

f(x,t)=g(u,v)=g(x+ct,x—ct).
u+v u—v
2 7 2¢

On a alors g(u,v) = g( ) et gest C* sur R*.
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A) Extrema d’une fonction de plusieurs variables.

1) Extremum global

Définition : soit D une partie quelconque de R”, et f:D—R. On dit que f/ admet un
maximum global égal & f(a) (resp. un minimum global) en un point a € D si et seulement si

VxeD, f(x)< f(a)(resp. Vxe D, f(x)=> f(a)). f admet un extremum global en a € Dsi et
seulement si elle admet un maximum ou un minimum global en a.

Rappel : théoréme des bornes atteintes (*) : soit D R”. On suppose que D est fermé et
borné. Soit f: D — Rune fonction continue. Alors f est bornée et atteint ses bornes (elle

admet donc un minimum et un maximum global sur D).

Remarque : pour montrer qu’une fonction f: D — R n’admet pas de maximum global sur D
, il suffit de trouver une suite (x,) d’¢léments de D telle que f(x,) — +oo.
n—»+0
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Exemples :
1) On considére f(x,y)=2x"+)" —3xy+1. Montrer qu’elle n’a pas d’extremum
global sur R*. Montrer qu’elle posséde un maximum et un minimum global sur
D= {(x,y) eR*,x>0,y>0,x+y< 1} . On ne demande pas de les calculer.

2) On peut utiliser le théoréme des bornes atteintes méme si f n’est pas définie sur une
_ ) ) R*> >R
partie fermée et bornée. Par exemple, on prend f':
(x,y) > xye
Montrer que f admet un maximum global sur R> (on pourra passer en polaires et
considérer f(rcos(6),rsin(6))).

(2t
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3) Extremum local. Point critique.

Définition : soit D une partie de R”, et f: D — R. On dit que fadmet un maximum local en
un point a € D si et seulement si 3o >0,Vxe DN B(a,a), f(x)< f(a).
Ce maximum local est strict si et seulement si I >0,Vx e DN B(a,a)\ {a} , f(x)< f(a).

De méme pour un minimum local.

Définition (*) : Soit de nouveau U unouvertde R”,et f:U — R et f une fonction de classe

C'sur D.Soit a€ D. a est un point critique si et seulement si Vf'(a)=0.

Rappels :
e On suppose que / est un intervalle ouvert de R soit f une fonction de / dans R,
dérivable sur /. Si fadmet un extremum local en un point a, alors f'(a)=0.

e (e résultat devient faux si on ne suppose plus que 7 est un ouvert.
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Proposition (*) : soit U un ouvert de R”et f:U — R. On suppose que f est de classe C'
sur U et qu’elle admet un extremum localen a e U .

Alors aest un point critique (on a Vf(a)=0, c’est-a-dire que toutes les dérivées partielles
s’annulent en a).

Preuve : on traite le cas d’un minimum local. Les fonctions partielles aussi admettent des
extrema. Donc leurs dérivées s'annulent.

Remarque (*) : cette condition n’est pas suffisante. On peut avoir un point critique qui n’est
pas un extremum local. C’est le cas d’un « point col » ou d’un « point selle ».
On a alors un maximum local dans une direction et un minimum local dans une autre.
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Exemple : on prend f(x,y)=xy en a=(0,0).

Proposition (*) : soit U un ouvert de R”et f:U — R. On suppose que f est de classe C°
sur U et qu’elle admet un point critique en a € U (c’est-a-dire que Vf(a)=0). Alors :
1) Si H,(a)eS,” (R) (c’est-a-dire Sp(Hf (a)) cR’), alors f atteint un minimum local
stricten a .
2) Si H,(a)eS; (R)(cest-a-dire Sp(H, (a))z R

propre strictement négative de H ,(a) ), alors /* n’admet pas de minimum local en a.

ou encore qu’il existe une valeur

4+

Preuve : avec le développement limité d’ordre 2.
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Corollaire : soit U un ouvertde R”et f:U — R . On suppose que f estde classe C' sur U
et qu’elle admet un point critique en a € U (c’est-a-dire que Vf(a)=0). Alors :

1) Si Sp(Hf(a)) c R, alors f atteint un maximum local stricten a .

2) Si Sp(Hf(a)) z R_,alors f n’admet pas de maximum local en a

Preuve : non faite. C’est pareil que celle du résultat précédent.

Remarque (*) : sous les mémes hypothéses :
e Lorsque H ,(a)posséde une valeur propre strictement négative et une autre strictement

positive, il n’y a pas d’extremum local en a.
* Si toutes les valeurs propres de H (a) sont strictement positives, il y a un minimum

local stricten a.
* Si toutes les valeurs propres de H ,(a) sont strictement négatives, il y a un maximum

local strict en a.
e Lorsque Sp (Hf (a)) cR, (ou que Sp (Hf (a)) cR_), et que Oest valeur propre de
H ,(a), on ne peut pas conclure et il se peut qu’il y ait un extremum local ou pas. Il faut

alors étudier directement la fonction au voisinage du point critique.

Proposition (*) : cas particulier en dimension 2. Soit U un ouvert de R’et f/:U - R. On
suppose que f estde classe C* sur U et qu’elle admet un point critique en a € U (c’est-a-dire
que Vf(a)=0). Alors:

* Sidet(H,(a))<0, fn’admet pas d’extremum local en a.

o Sidet(H ,(a))>0 et Tr(H (a)) >0, alors f admet un minimum local strict en a.

e Sidet(H ,(a))>0 et Tr(H ,(a)) <0, alors fadmet un maximum local strict en a.

Preuve :
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Méthode (*) : pour chercher les extrema locaux ou/et globaux de f: D — R, ou D estune
partie de R* (ceci se généralise 2 R” pour p >2), on peut commencer par dessiner D . On note

Fr(D)la frontiére (le bord) de D s’il existe (Fr(D) est vide si Dest ouvert). On pose
U = D\ Fr(D) qui est un ouvert.

1) On cherche les points critiques a € U . Ce sont les seuls extrema possibles pour f dans
U . Sion veut savoir si f posséde un extremum local en a, on peut utiliser H ,(a).

2) On peut montrer 1’existence d’extrema globaux avec le théoréme des bornes atteintes
(si Destun fermé borné, ou qu’on se place sur un sous-ensemble de D).
3) S’ilyalieu, on cherche le maximum et le minimum de f sur Fr(D).On peut comparer

avec les valeurs aux points critiques pour déterminer les extrema globaux de f sur D.

Exemples :

1) Pour (x,y)eR?, on pose f(x,y)=x"—4xy+y*. Etudier le nature des extrema
locaux de fsur R”.

2) Trouver les extrema globaux de la fonction définie par : f(x,y)=x>—x+2y° sur
D=D(0,)={(x,y) eR*,x* +y” <1},

3) Trouver les extrema globaux de (x,y)F> g(x,y)=x"+1> =3 (x+y)+xp+1 sur
R* et sur D:{(x,y) eRi,x+yS1} .
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