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Kit de survie : algèbre linéaire  
 
Dans la suite, K    ou  . 
 
A) Polynômes 
 
Division euclidienne : soient A  et B deux éléments de  XK . On suppose que B  n'est pas le 

polynôme nul. Alors il existe un unique  2),( XKRQ  tels que  

 RBQA   

 )deg()deg( BR   
 
Multiplicité d’une racine : soit Ka et  P K X .   

 a est racine d’ordre (ou de multiplicité) k de P si et seulement si une des deux 
propositions équivalentes suivantes est vérifiée :  
- Il existe un polynôme Q  tel que QaXP k)(  , avec 0)( aQ .  

-   ( ) ( )0, 1 , ( ) 0, ( ) 0i ki k P a P a      

 Soit  P X . Soit *n . On suppose que a est une racine d’ordre n de P dans  . 

Alors a  est aussi racine d’ordre n de P dans  . 
 On suppose que *( , )mult a P n   ( a  est racine de multiplicité n  de P ). Alors 

( , ') 1mult a P n  . 

 a  est racine multiple de P  si et seulement si ( ) ' ( ) 0P a P a   
 
Nombre de racines d’un polynôme :  

 Si    \ 0nP K X  ( deg( )P n  et P non nul), alors P admet au maximum n  racines 

comptées avec leur multiplicité.  
 Si un polynôme P a une infinité de racines distinctes, alors 0P  .  
 On suppose que P est de degré *n . Si on trouve n racines distinctes de P , alors ce 

sont les seules et elles sont toutes simples.  
 
Polynôme scindé : soit  XKP  

  P est scindé si et seulement si il est constant ou qu’il s’écrit sous la forme 

1

( ) i

k

i
i

P X x 


  , où K , *k , 1,.., kx x sont les racines de P, deux à deux 

distinctes, telles que pour 1 i k  , la multiplicité de ix est ( , )i imult x P  . 

 Tout polynôme de  X  est scindé dans  X . Tout polynôme P non constant de 

 X  admet au moins une racine complexe (d’Alembert-Gauss).  

  Si  *deg( )P n   et que P est scindé dans  K X , alors P admet exactement n

racines dans K  comptées avec leur multiplicité. 
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Relations entre coefficients et racines : soit 



n

k

k
k XaP

0

un polynôme scindé de degré 

*n  tel que 1( )...( )n nP a X x X x   , avec 1,..., nx x K , non nécessairement distinctes. 

Alors 1

1

n
n

k
k n

a
x

a




   et 0

1

( 1)
n

n
k

k n

a
x

a

   

 
Décomposition en éléments simples : soient  ,P Q K X . On suppose que deg( ) 1Q  , que 

deg( ) deg( )P Q  et que Q  est scindé à racines simples : il existe un entier *k , 

1 2, ,..., kx x x K  deux à deux distincts et *K   tels que 1( )...( )kQ X x X x   .  

Alors il existe 1,..., ka a K tels que  1
1

( )
\ ,..., ,

( ) ( )

k
i

k
i i

P x a
x K x x

Q x x x

  
 .  

Cette décomposition est unique, C’est la décomposition en éléments simples de 
P

Q
.  

 
B) Espaces vectoriels et applications linéaires 
 
Dans la suite, , ,E F G  sont des K  espaces vectoriels,  

 
Sous-espace vectoriel :  Soit F E . F est un sous-espace vectoriel de E  si et seulement si :  

 0E F  

 2( , ) , , .x y F K x y F        
 
Familles : Une famille 1 2( , ,..., )px x x d'éléments de E  est  

 génératrice de E  lorsque tout élément de E  peut s'écrire comme combinaison linéaire 
des 1( )i i px   .  

 libre si et seulement si 1 2 1 2
1

( , ,..., ) , 0 ( ... 0)
n

n
n i i E n

i

K x      


         

 Si 0Eu   et que ( , )u v est liée (c’est-à-dire non libre), alors ,K v u    .  

 Si ),.....,,( 21 nxxx  est libre et ),.....,,,( 21 nxxxx  est liée (avec x E ), alors x est 

combinaison linéaire de ),.....,,( 21 nxxx .  

 Soit  0 1, ,..., nP P P  une famille de polynômes non nuls de degrés distincts. Alors la 

famille 0( )i i nP   est libre. 

 
Bases d’un espace vectoriel :  

 Une base de E est une famille qui est à la fois libre et génératrice de E .  
 Si *dim( )E n  , toute famille libre (ou génératrice) de n vecteurs de E  est une base 

de E . 
 Base incomplète : Si E est de dimension finie, toute famille libre d’éléments de E peut 

être complétée en une base de E .  
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Polynômes d’interpolation de Lagrange. Soit 1 1,..., nx x K  , deux à deux distincts.  

 Pour tout  1, 1i n  , il existe un unique polynôme  i nP K X  tel que ( ) 1i iP x   et 

tel que , ( ) 0i jj i P x   . 

 1 1( ,... )nB P P  est une base de  nK X . De plus, si  
1

1

, ( )
n

n k k
k

P K X P P x P




   

 
Pour trouver la dimension :  

 La dimension de E  est le nombre d’éléments d’une base.  
 S’il existe un espace vectoriel F tel que dim( )F p  et un isomorphisme 

:f E F , alors dim( ) dim( )E F p  .  
 
Montrer que deux espaces vectoriels sont égaux en dimension finie : deux possibilités.  

 Prouver une double inclusion.  
 Montrer une inclusion et l’égalité des dimensions.  

 
Dimension des espaces usuels :  

 Soit n .   dim 1nK X n   

 Soient *,n p . Alors  ,dim ( )n pM K n p .  

 
Somme directe : soit 1 2, ,..., pF F F  des sous-espaces vectoriels de E .  1 2, ,..., pF F F  sont en 

somme directe (on la note 
1

p

i
i

F

 ) si et seulement si une des deux assertions équivalentes 

suivantes est vérifiée : 
  1 2 1 2 1 2 1 2( , ,.., ) ... , .. 0 .. 0p p p E p Ex x x F F F x x x x x x              .  

 1 2 1 2 1 2
1

, !( , ,.., ) ... , ..
p

i p p p
i

x F x x x F F F x x x x


           .  

 
Dimension d’une somme de sous-espaces vectoriels : soit 1 2, ,..., pF F F  des sous-espaces 

vectoriels de dimension finie de E . On suppose que pour 1 i p  , iB est une base de iF .  

On note B la famille de vecteurs obtenue en concaténant les vecteurs des bases 1 2, ,..., pB B B .  

 1 2 1 2 1 2dim( ) dim( ) dim( ) dim( )F F F F F F      (Formule de Grassmann) 

    1 2
1

dim ... dim
p

p i
i

F F F F


     

 Si 
1

p

i
i

F E


 , alors B est une base de E , adaptée à la décomposition 
1

p

i
i

F E


 .  

 Réciproquement, si B est une base de E , alors 
1

p

i
i

F E


  

En particulier,  
1 1

dim dim
pp

i i
i i

F F
 

 
 

 
 .  
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Montrer que deux sous-espaces vectoriels de E  sont supplémentaires : EGF   : 

 En dimension finie, EGF   si et seulement si 
 0

dim ( ) dim ( ) dim ( )

F G

F G E

  


 
.  

 En dimension finie, EGF   si et seulement si en réunissant une base de F et une 
base de G , on obtient une base de E . 

 En dimension quelconque, on peut prouver (souvent par analyse-synthèse) 
, !( , ) ,x E f g F G x f g        

 Si 1 2F F E   et x E , on n’a pas forcément 1x F  ou 2x F .  

 
Applications linéaires : soit :f E F .  

 f est linéaire si et seulement si 2, ( , ) , ( ) ( ) ( )K x y E f x y f x f y         .  

 f est un isomorphisme si et seulement si f est linéaire et bijective.  

 f est un endomorphisme de E si et seulement si f est linéaire, de E  dans E F .  

 f est un automorphisme de E si et seulement si f est linéaire, bijective, de E dans E .  

 Une application linéaire est entièrement déterminée par l’image d’une base si l’espace 
de départ est de dimension finie.  

 Si E et F sont de dimension finie, dim( ( , )) dim .dimL E F E F  
 
Noyau et Image : soit ),( FELf  , ),( GFLg   Alors :  

 L’image de f est  Im( ) , , ( )f y F x E f x y       

 ),( FELf  est surjective si et seulement si Im ( )f F .  

 Le noyau de f  est  ( ) , ( ) 0FKer f x E f x   .  

 f est injective si et seulement si  EfKer 0)(  . 

 ( , )0 Im( ) ( )L E Gg f f Ker g   . 

 
Projections : On suppose A B E  . Ainsi si Ex , BAba  ),(! tels que bax  . 

 La projection sur A parallèlement à B est l'endomorphisme p de E défini par axp )( . 

 p  est alors la projection sur  Im( ) , ( ) ( )Ep A x E p x x Ker p Id       

parallèlement à ( )Ker p B .  

 Si E est de dimension finie, alors p est diagonalisable dans une base obtenue en 

réunissant une base de ( )EA Ker p Id  et de ( )B Ker p  

 Si ( )f L E vérifie f f f , alors ( ) Im( )E Ker f f   et f  est la projection sur 
Im( )f  parallèlement à ( )Ker f .  

 
Symétries : On suppose A B E  . Ainsi si Ex , BAba  ),(! tels que bax  . 

 La symétrie par rapport à A  parallèlement à B  est définie par baxs )( . 

 ( )s GL E , Es s Id , 1s s  .  

 Soit ( )f L E . Si Ef f Id , alors ( ) ( )E EE Ker f Id Ker f Id     et f  est la 

symétrie par rapport à ( )EA Ker f Id   parallèlement à ( )EB Ker f Id  .  

 s est diagonalisable dans une base obtenue en réunissant une base de A et de B .  
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Formes linéaires et hyperplans : on suppose   *dim E n  . Soit H E .  

 Une forme linéaire est une application linéaire de E dans K .  
 H est un hyperplan de E si et seulement si dim( ) 1H n  .  

 Soit u une forme linéaire non nulle sur E. Alors )(uKer  est un hyperplan.  
 
C) Matrices et applications linéaires 
 
Soit *,n p . On suppose dim( )E p  et dim( )F n . 

Soient ),...,,( 21 peeeB  une base de E  et ),...,,( 21 nfffC   une base de F . 

 
Matrice d’une application linéaire. Soit ( , )g L E F . La matrice , ( ) ( )B C n pA M g M K   de

g  dans les bases B et C est obtenue en reportant dans la j-ème colonne les coordonnées du 

vecteur ( )jg e dans la base C  :   ,
1

1, , ( )
n

j i j i
i

j p g e A f


   .  

 
Matrice d’une composée : soit G  un espace vectoriel de dimension *q  et D  base de G . 

Soit ),( FELu et ),( GFLv . Alors )().()( ,,, uMvMuvM CBDCDB o .  

 
Produit matriciel : Soit )(, KMA pn , , ( )p qB M K  et ,1( )pX M K . Soit g  une application 

linéaire g  telle que , ( )B CM g A  Alors : 

 , ( )n qAB M K  et pour  1,i n  et  1,j q , , , ,
1

( )
p

i j i k k j
k

AB A B


 . 

 ,1( )nAX M K et pour  1,i n , ,
1

( )
n

i i k k
k

AX A X


  

 Pour trouver les coordonnées de l’image d’un vecteur x  par g , on calcule AX . 

 Pour trouver le noyau de g , on peut résoudre 0AX  . 
 
Rang : Soit ( , )g L E F  et , ( ) ( )B C n pA M g M K  . Soient 1 ,..., pC C les colonnes de A  

   1( ) dim ( ,..., ) ( )T
prg A Vect C C rg A  .  

 ( ) dim(Im( )) ( )rg g g rg A   

 dim( ) ( ) dim( ( ))E rg g Ker g  (théorème du rang).  

  ,1ker ( ) ( ), 0pA X M K AX    et dim( ( )) ( )Ker A p rg A  .  

 Si )(, KMB qp , ))(),(min()( BrgArgABrg  et )()( ArgABrg  si B est inversible.  

 
Calculs de puissances de matrices : pour calculer nA  , avec ( )pA M K , on peut 

 Calculer 2A , deviner le résultat ou sa forme et le prouver par récurrence. 

 Utiliser le binôme de Newton : si A B C  , où BC CB ,  
0

( )
n

n k n k

k

n
B C B C

k




 
   

 
  

 Diagonaliser (ou trigonaliser) A  et l’écrire 1A P D P  , puis utiliser 1n nA P D P  .  
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Inverse et transposée : Soit )(, KGLBA n . Soient , ( )nC D M K Alors : 

 ( )T T TC D D C  

 ( ) ( )nAB GL K  et 111)(   ABAB  

 ( )T
nA GL K  et 1 1( ) ( )T TA A  . 

 
Matrices inversibles et bijectivité : Soit ( )g L E  et ( ) ( )B pA M g M K  . 

 g est bijective si et seulement si ( )pA GL K . On a alors 1 1( ( ))BA M g  . 

 g est bijective si et seulement si g est injective (ou surjective). 

 A est inversible si et seulement si une des conditions équivalentes suivantes est 
vérifiée : 
-  ker( ) 0A   

- ( )rg A p  
- det( ) 0A   

- Les colonnes de A  forment une famille libre dans nK . 

 
Trace : soient , ( )nA B M K . Alors : 

 
1

( ) ( )
n

T
i i

i

tr A A tr A


   

 ( ) ( )tr A B tr B A  
 
Déterminant : soit , ( )nA B M K . Alors : 

 Quand on échange deux colonnes de A , le déterminant est multiplié par ( 1) .  

 Si une colonne de A  est combinaison linéaire des autres, alors det ( ) 0A  .  

 si K , det ( ) det ( )nA A  .  

 Si on ajoute à une colonne de A une combinaison linéaire des autres, alors le 
déterminant est inchangé.  

 )det().det()det( BAAB   et si )(KGLA n , 
)det(

1
)det( 1

A
A   

 det( ) det( )TA A . Les opérations sur les lignes ont le même effet sur le déterminant 
que celles sur les colonnes.  

 
Développement par rapport à une ligne ou une colonne : soit ( )nA M K  et 2n  . Pour 

1 ,i j n  , on note , ( 1) det ( ( , ))i j
i jD M i j  , où 1( , ) ( )nM i j M K est la matrice obtenue en 

supprimant la i ème ligne et la j ème colonne de A . Alors : 

 , ,
1

det ( )
n

i j i j
i

A A D


  (développement par rapport à la j ème colonne de A ). 

 , ,
1

det ( )
n

i j i j
j

A A D


 (développement par rapport à la i ème ligne de A ). 
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Déterminant de Van der Monde. Soit 2n   . Soit 1 ,..., nx x K et 

1
1 1

1
2 2

1

1

1

1

n

n

n

n
n n

x x

x x
V

x x







 
 
   
  
 




  
 

la matrice de Vandermonde.  Alors nV  est inversible si et seulement si 1 ,..., nx x  sont deux à 

deux distincts. On a par ailleurs  
1

2 1

det ( )
jn

n j i
j i

V x x


 

  .  

 

Matrices par blocs : Soit 
A B

M
C D

 
  
 

, 
' '

' '

A B
N

C D

 
  
 

 et K . On suppose :  

, ,, ' ( ), , ' ( ), , ' ( ), , ' ( )q q n q n q q n qA A M K B B M K C C M K D D M K      . Alors : 

 
' '

' '

A A B B
M N

C C D D

 


 
  

     
 et

' ' ' '

' ' ' '

AA BC AB BD
M N

CA DC CB DD

  
    

 

 Si ( )
0 n

A B
M M K

D

 
  
 

, est triangulaire par blocs, alors det( ) det( ).det( )M A D .  

 
Sous-espaces stables et blocs : soit G un sous-espace vectoriel de E . Soit , ( )f g L E .  

 G est stable par f si et seulement si ( )f G G ( , ( )x G f x G   ).  

 Les sous-espaces propres de f sont stables par f .  

 Si  f g g f  , les sous-espaces propres de f sont stables par g .  

 Si B est une base adaptée à G (c’est-à-dire une base  1,.., qe e de G complétée en une 

base  1,.., pe e e  de E ), G est stable par f si et seulement si ( )
0e

A B
M f

D

 
  
 

, avec 

,( ), ( ), ( )q q n q n qA M K B M K D M K    .  

 
D) Changement de base. Réduction.  
 
Soit *n tel que dim( )E n . Soient , 'B B deux bases de E . Soit ( )f L E et ( )BA M f .  

 
Eléments propres d’une application linéaire : soit ( )f L E . Soit K . Alors :  

  est valeur propre de f si seulement si il existe 0Ex  tel que ( )f x x .  

 Tout vecteur 0Ex   tel que ( )f x x est un vecteur propre associé à la valeur 

propre  . 
 Lorsque ( )Sp f  , ker( )Ef Id est le sous-espace propre associé à  

 Les sous-espaces propres de f sont en somme directe.  

 L’ensemble des valeurs propres de f est appelé spectre de f et noté ( )Sp f .  
 
Eléments propres d’une matrice :  soit ( )nA M K . Soit K . Alors : 

  est valeur propre de A si seulement si il existe 0X   tel que AX X .  

 Tout vecteur 0X   tel que AX X est un vecteur propre associé  .  
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 L’ensemble des valeurs propres de A est appelé spectre de A et noté ( )Sp A .  

 le sous-espace propre associé à la valeur propre   est  ( ) ker nE A A I   .  

 0 est valeur propre de A si et seulement si A n’est pas inversible. Alors 0( ) kerE A A . 

 Pour déterminer la dimension de  ( ) ker nE A A I   , il suffit de trouver 

 nrg A I et d’utiliser le théorème du rang.  

 Si ( )nA M K  est une matrice triangulaire, alors les valeurs propres de A sont les 

coefficients diagonaux de A .  
 

Polynôme annulateur : soit  
0

p
k

k
k

P a X K X


  . Soient , ( )u v L E et  , nA B M K . 

 On définit ( ) ( )P u L E  par 0 1 2
0

( ) ...
p

k p
k E p

k

P u a u a Id a u a u u a u


       .  

 P est un polynôme annulateur de u si et seulement si ( )( ) 0L EP u  . 

 On définit  ( ) nP A M K  par 2
0 1 2

0

( ) ...
p

k n
k n n

k

P A a A a I a A a A a A


      . 

 P  est un polynôme annulateur de A si et seulement si ( )P A  est la matrice nulle.  

 Si P  est un polynôme annulateur de A  et  est valeur propre de A , alors ( ) 0P   .  
 
Polynôme caractéristique : soit ( )nA M K .  

 Le polynôme caractéristique de A est A  défini par  ( ) detA nI A    . Ses racines 

sont les valeurs propres de A .  
 A est unitaire, de degré n , et 1( ) ... ( 1) det ( )n n n

A X Tr A X A       

 Si ( )Sp A  , sa multiplicité  mult  comme valeur propre de A est sa multiplicité 

comme racine de A . On a alors  1 dim ( ) ( )E A mult   .  

 Si ( )nA M  et si est valeur propre de multiplicité *p de A , alors   est 

valeur propre de A de multiplicité p .  

 Si ( )nA M  , A  possède n  valeurs propres complexes comptées avec leur 

multiplicité (en particulier, A possède au moins une valeur propre complexe).  
 La somme des valeurs propres complexes de A  (comptées avec leur multiplicité) est 

égale à ( )tr A et leur produit à det( )A .  

 ( ) (0)A A   (théorème de Cayley-Hamilton). 

 
Matrice de passage et matrices semblables : soient , ' ( )nA A M K , avec ( )BA M f .  

 La matrice de passage de B à 'B , notée , 'B BP P , est obtenue en reportant en colonnes 

les coordonnées des vecteurs de la base 'B dans B . Si AfM B )(  et ' ( ) 'BM f A , 

alors 1'A P A P  .  

 A  et 'A sont semblables si et seulement si il existe ( )nP GL K telle que 1'A P A P   

 A et 'A sont semblables si et seulement si elles sont les matrices d’un même 
endomorphisme dans deux bases différentes.   
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 Deux matrices semblables ont même trace, même déterminant et même polynôme 
caractéristique.  

 Si K , la seule matrice semblable à nI est nI .  

 
Endomorphisme diagonalisable : f est diagonalisable si et seulement si on a un des critères 
suivants : 

 il existe une base B  de E  dans laquelle la matrice de f est diagonale ( B est ainsi 
constituée de vecteurs propres de f ).  

 
( )

( )
Sp f

E E f


   

  
( )

dim ( ) dim( )
Sp f

E f E


 .  

 Il existe un polynôme  P K X , scindé à racines simples, tel que ( )( ) 0L EP f   

 
Endomorphisme induit : Soient ( )f L E , et F sous-espace vectoriel de E ,stable par f .  

 L’endomorphisme induit par f sur F est :
( )F

F F
f

x f x




.  

 Si f  est diagonalisable, alors Ff  est diagonalisable.  

 
Matrice diagonalisable : soit ( )nA M K  et ( )f L E tel que ( )BA M f . Alors A est 

diagonalisable si et seulement si on a un des critères suivants : 
 f est diagonalisable. 

 A est semblable à une matrice diagonale.  
  

( )

dim ( )
Sp A

E A n


  

 A est scindé sur K  et pour toute valeur propre ( )Sp A  ,  ( ) dim ( )mult E A   

 Il existe un polynôme  P K X , scindé à racines simples, tel que ( ) 0P A  .  

 
Cas particuliers fondamentaux :  

 Si A  possède une unique valeur propre K , A est diagonalisable si et seulement si 

nA I .  

 Si ( )nA M K  admet n  valeurs propres distinctes, alors A est diagonalisable. 

 Si  nA M   est symétrique réelle, alors A est diagonalisable sur  .  

 
Matrice trigonalisable : soit ( )nA M K  et ( )f L E tel que ( )BA M f . Alors A est 

trigonalisable si et seulement si on a un des critères équivalents suivants : 
 A est semblable à une matrice triangulaire supérieure. 
 Il existe une base de E dans laquelle la matrice de f est triangulaire supérieure.  

 A  est scindé sur K  (en particulier, dans  nM  , toute matrice est trigonalisable).  
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E) Produit scalaire, expaces euclidiens.  
 
Soit E  un  -espace vectoriel. 
 
Produit scalaire : Soit h une application de E E dans  . 

 On dit que h est bilinéaire si et seulement si elle est linéaire par rapport à chacune de 

ses variables (
( ', ) ( , ) ( ', )

, ', , ' , ,
( , ') ( , ) ( , ')

h x x y h x y h x y
x x y y E

h x y y h x y h x y

 


 
  

       
 ) 

 On dit que h est symétrique si et seulement si , , ( , ) ( , )x y E h x y h y x    

 On dit que h est définie positive si et seulement si 
( , ) 0

,
( , ) 0 0E

h x x
x E

h x x x


     

 

h est un produit scalaire sur E si et seulement si h est symétrique, bilinéaire, définie positive. 
Un espace euclidien est un  -espace vectoriel de dimension finie, muni d’un produit scalaire. 
Un espace préhilbertien réel est un  -espace vectoriel muni d’un produit scalaire.  
 
Inégalité de Cauchy-Schwarz : soit ( , , )E  un espace préhilbertien. Pour x E , on note 

/x x x .  est une norme sur E  : c’est la norme euclidienne. De plus : 

 2( , ) , , . (1)x y E x y x y    

 Il y a égalité dans (1)  si et seulement si la famille ),( yx est liée. 
 
Base orthonormée : soit ( , , )E est un espace euclidien. Soit ( )f L E . Soit 1( ,..., )nu u une 

famille d’éléments de E .  

 1( ,..., )nu u est orthonormée si et seulement si   ,, 1 , ,, i j i jun ui j   . 

 Toute famille orthonormée est libre.  
 Il existe une base orthonormée de E .  

Soit  1,..., nB e e  une base orthonormée de E .  

Si ( )BM M f , 
1

n

k k
k

x x e


  , ( )BX M x ,
1

n

k k
k

y y e


  et ( )BY M y . alors :  

  1,2,.., , ,i ii n x x e   .  

 
1

,
n

T T
i i

i

x y x y X Y Y X


    et 
2 2

1

( )
n

T
i

i

x x X X


   

   ,, 1, , ( ),i j j ii j n M f e e    

 
Orthogonal d’un sous-espace vectoriel : soit ( , , )E est un espace préhilbertien. Soit A  un 

sous-espace vectoriel de E . 
 L’orthogonal de A  dans E  est défini par  , , , 0A x E a A a x      .  

 Si A B ( , , , 0x A y B x y     ), alors A B   

 Si 1( ,.., )ka a  est une base de A  et si x E , on a  1, 2,.., , 0ix A i k x a     .  

 Si A est de dimension finie, alors A A E  .  

 Si E est de dimension finie,  A A
   
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Projection orthogonale :  Soit ( , , )E  un espace préhilbertien. Soit V un sous-espace 

vectoriel de E  de dimension finie. Soit 1( ,.., )pe e  une base orthonormée de V . 

 La projection orthogonale Vp  sur V  est la projection sur V  parallèlement à V  . 

 
1

( ) ,
p

V i i
i

p x x e e


 (utile si on a une base orthonormée).  

 La symétrie orthogonale Vs par rapport à V  est la symétrie par rapport à V  

parallèlement à V  . On a 2V V Es p Id  .  

 
 
Orthogonalisation de Gram-Schmidt : Soit 1( ,..., )ne e une famille libre d’éléments d’un 

espace préhilbertien. Alors il existe une famille orthogonale 1( ,..., )nf f  de vecteurs non nuls 

tels que      1 11, , ,..., ,...,k kk n Vect e e Vect f f   . De plus, si on note  1,...,k kF Vect e e , 

on peut prendre  1 1 1kk k F kf e p e     , où 
kFp est la projection orthogonale sur kF .  

 
Distance à un sous-espace vectoriel : Soit ( , , )E  un espace préhilbertien. Soit V un sous-

espace vectoriel de E , de dimension finie. Soit x E . La distance de x  à V  est 

( , ) inf ( ) ( )V
v V

d x V x v x p x


    . Avec Pythagore, 
222( , ) ( )Vd x V x p x  .  

 
Matrices orthogonales : soit ( )nM M  .Soit 1( ,..., )nC C les colonnes de M et 1( ,..., )nL L  ses 

lignes.  
 M est une matrice orthogonale (on note ( )nM O  ) si et seulement si T

nM M I , ce 

qui équivaut aussi à 1( ,..., )nC C est une base orthonormée de n  , ou encore à 1( ,..., )nL L  

est une base orthonormée de n pour le produit scalaire usuel.  
 La matrice de passage d’une base orthonormée à une autre est une matrice orthogonale.  
 Si ( )nM O  , alors 1)det( M (la réciproque est fausse).  

 
 
Isométries : Soit  1, ..., nB e e une base orthonormée de E  euclidien. Soit ( )f L E . f est 

une isométrie de E  (on note ( )f O E ) si et seulement si une des conditions équivalentes 
suivantes est satisfaite : 

 f conserve la norme : , ( )x E f x x   . 

 f conserve le produit scalaire : , , ( ), ( ) ,x y E f x f y x y    

     1( ) ,..., nf B f e f e est orthonormée.  

 ( ) ( )B nM f O  .  

 
Sous-espaces stables : soit )(EOf  . Soit F un sous-espace vectoriel de E , stable par f . 

Alors ( )f F F et F  est stable par f .  
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Groupe orthogonal en dimension 2 : les éléments de 2 ( )O   sont (avec   ) : 

 Les matrices de rotations
cos( ) sin( )

sin( ) cos( )
R

 
 

 
  
 

, qui sont les éléments de 2 ( )SO  .  

 Les 
cos( ) sin( )

sin( ) cos( )
S

 
 

 
   

. 

Lorsque  0  , les matrices de rotations n’admettent pas de valeur propre réelle.  

 
Endomorphismes autoadjoints ou symétriques (ne pas confondre avec les symétries) : Soit
B une base orthonormée de E  euclidien. Soit ( )f L E . Soit ( )BA M f  

f est autoadjoint si et seulement si une des conditions équivalentes suivantes est satisfaite :  

 , , ( ), , ( )x y E f x y x f y   .  

  ( )B nA M f S    (ou encore TA A ).  

 
Projecteurs autoadjoints : soit ( )p L E un projecteur. Alors p est autoadjoint si et 
seulement si p est une projection orthogonale.  
 
Théorème spectral :  

 ( )f L E . On suppose que f est autoadjoint. Alors f est diagonalisable et il existe 
une base orthonormée de vecteurs propres de f .  

 Soit  nA S  , symétrique réelle. Alors A est diagonalisable et il existe une matrice 

 nD M  diagonale et une matrice  nP O  telles que 1 TA P D P P D P  .  

 
Endomorphismes autoadjoints positifs ou définis positifs : Soit ( )f S E , autoadjoint. 

 f est autoadjoint positif (on note ( )f S E ) si et seulement si une des conditions 
équivalentes suivantes est satisfaite :  
- , ( ), 0x E f x x   . 

- ( )Sp f   .  

 f est autoadjoint défini positif (on note ( )f S E ) si et seulement si une des 
conditions équivalentes suivantes est satisfaite :  
-  \ 0 , ( ), 0Ex E f x x   . 

- *( )Sp f   .  

 
Matrices symétriques définies positives ou définies positives : Soit B une base orthonormée 
de E  euclidien. Soit ( )f S E , autoadjoint. Soit  ( )B nA M f S   , symétrique. 

 A est symétrique positive (on note ( )nA S   ) si et seulement si une des conditions 

équivalentes suivantes est satisfaite :  
- ( )Sp A   

- , 0n TX X AX    

- ( )f S E  



13 
 

 A est symétrique définie positive (on note ( )nA S   ) si et seulement si une des 

conditions équivalentes suivantes est satisfaite :  
- *( )Sp A    

-  \ 0 , 0n TX X AX    

- ( )f S E  
 
F) Espaces vectoriels normés 
 
Norme : soit E un  espace vectoriel et N une application de E dans  . Alors N est une 
norme sur E si et seulement si :  

 , ( ) 0u E N u    

 , ( ) 0 0Eu E N u u       

 , , ( ) ( )u E N u N u        

 , , ( ) ( ) ( )u v E N u v N u N v      (Inégalité triangulaire) 
 
Suite : Soit une suite ( )nx d’éléments de E  et a E . 0n n

n n
x a x a

 
     

 
Suites de matrices :  

 Une suite de matrices ( )nM d’éléments de ( )pM K  converge vers ( )pM M K si et 

seulement si elle converge vers M coefficient par coefficient.  
 Toute matrice ( )pA M K  est limite d’une suite de matrices inversibles. 

 
Equivalence des normes : Soient 1N  et 2N deux normes sur un espace vectoriel E .  

 On dit que 1N  et 2N sont équivalentes si et seulement s’il existe deux constantes 

*,a b   telles que 1 2

2 1

( ) ( )
,

( ) ( )

N x aN x
x E

N x bN x


   

.  

 Si E  est de dimension finie, toutes les normes sur E sont équivalentes. Dans ce cas, la 
convergence d’une suite ne dépend pas de la norme choisie. 

 
Topologie d’un espace vectoriel normé : soit ( , )E  un espace vectoriel normé et A E .  

 A est convexe si et seulement si  , , 0,1 , (1 )x y A t tx t y A       . 

 A est fermé si et seulement si pour tout suite ( )na d’éléments de A qui converge vers 

a E , on a a A .  

 A est borné si et seulement si 0, ,M x E x M     .  

 A est ouvert si et seulement si son complémentaire dans E est fermé.  
 A est ouvert si et seulement si pour tout a A , il existe 0r  tel que ( , )B a r A .  

  a E est adhérent à A si et seulement si il existe une suite ( )nx d’éléments de A telle 

que n
n

x a
 
 . L’adhérence de A , notée A est l’ensemble des points adhérents à A . 

 Soit D A . On dit que D est dense dans A si et seulement si pour tout élément a A
, il existe une suite ( )n nd  d’éléments de D  qui converge vers a .  
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Continuité : Soient ( , )
E

E  et ( , )
F

F deux espaces vectoriels normés :f E F . Soit 

a E . Soit A E .  
 f est continue en a  si et seulement si ( ) ( )

x a
f x f a


 . 

 Caractérisation séquentielle : f  est continue en a  si et seulement si pour toute suite 

 nx  d’éléments de A  telle que n
n

x a

 , on a ( ) ( )n

n
f x f a


 .  

 Soit k  . f est k  lipschitzienne sur A  si et seulement si ,x y A  ,

( ) ( )
F E

f x f y k x y   . Elle est alors continue sur A .  

 Si f est continue sur E :  

- Si G est un fermé de F , alors  1( ) , ( )f G x E f x G     est un fermé de E . 

- Si O est un ouvert de F , alors  1( ) , ( )f O x E f x O     est un ouvert de E . 

 
Continuité en dimension finie : Soient ( , )

E
E  et ( , )

F
F deux espaces vectoriels normés 

:f E F . On suppose E de dimension finie. Soit A E .  

 Théorème des bornes atteintes : On suppose que A est non vide, fermé et borné. Soit 
:f A   une fonction continue. Alors f est bornée et atteint ses bornes (elle admet 

donc un minimum et un maximum global sur A ).  
 Les applications linéaires et bilinéaires sur E sont continues sur E . 
 det : ( )nM K K est continue sur ( )nM K .  
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Kit de survie : Probabilités 
 
Soit ( , ,P)T  un espace probabilisé.  
 
A) Probabilité sur un univers fini ou dénombrable. 
 
Union ou intersection infinie. Soit ( , ,P)T  un espace probabilisé. Soit ( )n nA  une famille 

d’événements.  

  
0

P( ) lim
n

n k
n k

n
A AP


 

 
  

 
  .  

  
0

P( ) lim
n

n k
n k

n
A AP


 

 
  

 
  .  

 

Conditionnement : Soient ,A B T , avec ( ) 0P B   . Alors 
P( )

P ( ) P( / )
P( )B

A B
A A B

B


   .  

 
Formule de probabilités composées. Soit 2n   et soit nAA ,..1 des événements tels que 

1 2 1P( .. ) 0nA A A     . Alors 1 2P( .. 01, )kAn A Ak      et on a  

1 2 1 2 1 1 2 1P( ... ) P( ) P( / ) ... P( / ... )n n nA A A A A A A A A A         

 
Système complet d’événements : Soit  n n

A
 une famille d’éléments de T  .  

 n n
A

 est un système complet d'événements si et seulement si  n n
A

 est une partition de 

  : 2( , ) , , i ji j I i j A A      et n
n

A


 

 . 

Quand on remplace n
n

A


 

 par  

0

1n
n

P A




 , on parle de système quasi-complet. 

 
Formule des probabilités totales : soit B   un événement.  
Si A   , on adopte la convention P( ) P( / ) 0A B A   si P( ) 0A  . 

 Si 1 2( , ,..., )nA A A est un système complet d’événements, alors : 

1 1

P( ) P( ) P( ) P( / )
n n

i i i
i i

B B A A B A
 

     

 Soit  n n
A

 un système complet ou quasi-complet d’événements. Alors la série 

( )nP B A converge et 
0 0

( ) ( ) ( / ) ( )n n n
n n

P B P B A P B A P A
 

 

     

 
Evénements indépendants : Soit 2n  et 1 ,..., nA A   des événements.  

 1 ,..., nA A  sont indépendants si et seulement si pour tout  1,...,k n , pour tous 

1 21 ... ki i i n     , on a 
1 2 1 2

P( ... ) P( )P( )...P( )
k ki i i i i i

A A A A A A     

 Si 1 ,..., nA A  sont indépendants et    1, , ,k k kk n B A A   . Alors 1 2, ,.., nB B B  sont 

indépendants. 
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B) Variables aléatoires 
 
Loi d’une variable aléatoire X  : il s’agit de trouver l’ensemble  X   des valeurs prises par 

la variable aléatoire, et de déterminer ( )P X x  pour chaque  x X   

 
Couple de variables aléatoires : Soit ,X Y  deux variables aléatoires discrètes sur  .  

 La loi conjointe du couple de variables aléatoires ( , )X Y  est la donnée, pour tout 

 x X   et tout  y Y  ,  des P(( ) ( )) P ( , )X x Y y X x Y y      .  

 Les lois marginales du couple ( , )X Y sont les lois de X et de Y . Elles se déduisent de 

la loi du couple ( , )X Y  : 
 

P( ) P( , )
y Y

X x X x Y y
 

     pour  x X  .  

 
Indépendance des variables aléatoires : soit *n . Soient 1 2, ,..., , ,nX X X X Y  des variables 

aléatoires discrètes sur .  
 On dit qu'elles sont indépendantes si et seulement si on a : 

1 1 1 1
1

( ),..., ( ), P (( ) ... ( )) P ( )
n

n n n n k k
k

x X x X X x X x X x


             

 Pour prouver que X et Y ne sont pas indépendantes, il suffit de trouver ( )x X  , 
( )y Y  tels que P( ) 0X x  et P( ) 0Y y  , mais P( , ) 0X x Y y   . 

 Si 1 2, ,..., nX X X  sont indépendantes et que pour  1,k n , kf  est une fonction définie 

sur  kX  .Alors      1 1 2 2, ,..., n nf X f X f X  sont indépendantes. 

 Lemme des coalitions : si 1 2, ,..., nX X X  sont indépendantes, que 1 p n  , alors si f

et g sont deux fonctions,  1 2, ,..., pX X Xf  et  1,...,p ng X X  sont indépendantes. 

 
Loi d’un maximum ou d’un minimum : lorsque X est le maximum (ou le minimum) d’un 
nombre fini de variables aléatoires réelles discrètes 1 2, ,..., nX X X indépendantes, mieux vaut 

calculer P( )X x  (ou P( )X x ) pour  x X  .  

 
C) Espérance et variance 
 
Espérance : Soit X  une variable aléatoire réelle ou complexe discrète sur .  

 Alors X est d’espérance finie si et seulement si la famille  ( ( ))x Xx P X x    est 

sommable. Dans ce cas, l’espérance de X est définie par 
 

( ) ( )
x X

E X xP X x
 

  .  

 Si    0,X    , on définit toujours 
 

 ( ) ( ) 0,
x X

E X xP X x
 

    . 

 Si X  est à valeurs dans    . Alors 
1 0

( ) ( ) ( )
n n

E X P X n P X n
 

 

      
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Propriétés de l’espérance : Soient 1 2, ,..., , ,nX X X X Y  des variables aléatoires discrètes sur 

. On suppose Y à valeurs réelles et 1 2, ,..., ,nX X X X  à valeurs dans K  ou  .  

 On suppose que Y est d’espérance finie et que , ( ) ( )X Y     . Alors X est 

d’espérance finie.  
 L’espérance est linéaire : si 1 2, ,..., nX X X  sont d’espérance finie et que 1 2, ,.., na a a K , 

alors 
1 1

( )
n n

k k k k
k k

E a X a E X
 

 
 

 
  .  

 Si 1,..., nX X  sont indépendantes et d’espérance finie, alors 
1

n

k
k

X

 est également 

d’espérance finie et
1 1

( )
n n

k k
k k

E X E X
 

 
 

 
  .  

 
Théorème de transfert : Soit X une variable aléatoire discrète sur .et : ( )f X   . 

 ( )f X  est d’espérance finie si et seulement si la famille  ( ( ) ( ))x Xf x P X x    est 

sommable et alors 
 

( ( )) ( ) ( )
x X

E f X f x P X x
 

  . 

 Si  nxxxX ...,)( 21  est fini, on a directement 
1

( ( )) ( ) ( )
n

j j
j

E f X f x P X x


  . 

 
Variance et écart-type : Soit X une variable aléatoire réelle discrète sur  . On suppose que 

2X est d’espérance finie. Alors X est d’espérance finie et admet une variance ( )V X . On a :  

      2 22( ) ( ) 0V X E X EX E X E X     . 

 L’écart-type de X est égal à )()( XVX  . 

 Si ,a b , il vient alors 2( ) ( )V aX b a V X   

 X est centrée si et seulement si ( ) 0E X  . Elle est centrée réduite si et seulement si 
( ) 1V X  .  

 
Covariance : soient ,X Y deux variables aléatoires réelles discrètes. On suppose que 2X et 2Y
sont d’espérance finie.  

 Alors X Y est d’espérance finie et 2 2( ) ( ) ( )E XY E X E Y  (Cauchy-Schwarz).  

  cov( , ) ( ) ( ) ( ) ( ( ))( ( ))X Y E XY E X E Y E X E X Y E Y      est la covariance de X et 

Y .  
 Si X et Y  sont indépendantes, alors cov( , ) 0X Y   

 
Variance d’une somme : Soit 1 2, ,.., nX X X  des variables aléatoires réelles discrètes sur . 

On suppose que 2 2 2
1 2, ,.., nX X X sont d’espérance finie. Alors : 

  1 2 1 2
1

( ... ) ( ) ( ) ... ( ) 2 cov ,n n i j
i j n

V X X X V X V X V X X X
  

         . 

 On suppose que 1 2, ,.., nX X X  sont deux à deux indépendantes.  

Alors 1 2 1 2( ... ) ( ) ( ) ... ( )n nV X X X V X V X V X        
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Inégalité de Markov. SoitY une variable aléatoire réelle discrète sur  . On suppose Y  à 

valeurs positives et d’espérance finie. Alors : 
( )

0, P( )
E Y

a Y a
a

     

 
Inégalité de Bienaymé-Tchebychev : Soit X une variable aléatoire réelle discrète sur  . On 

suppose qu’elle admet une variance. Alors 
2

( )
0, ( ( ) )

V X
P X E X 


     . 

 
Loi faible des grands nombres : Soit 1 2, ,.., nX X X  des variables aléatoires réelles sur . On 

suppose que 2 2 2
1 2, ,.., nX X X  sont d’espérance finie et que 1 2, ,.., nX X X ont même loi et sont  

indépendantes. On pose 1( )m E X  et 2
1( )V X  .On note 1 ...n nS X X   .  

Alors pour tout 0  , 
2

2
nS

P m
n n




 
    

 
 et donc 0n

n

S
P m

n




 
    

 
 

 
Fonction génératrice : soit X une variable aléatoire réelle discrète sur  , à valeurs dans  . 
La fonction génératrice de X  est définie en tout réel t  tel que Xt est d’espérance finie et donnée 

par  
0

( ) ( )X n
X

n

G t E t P X n t




   . Cette série entière a un rayon de convergence 1R  .  

 Il y a convergence normale sur  1,1  , donc XG est continue sur  1,1 .  

 La loi de X est entièrement déterminée par sa fonction génératrice. En particulier, 
( ) (0)

, ( )
!

k
XG

k P X k
k

    .  

 X est d’espérance finie si et seulement si XG est dérivable en 1 et dans ce cas 

  ' (1)XE X G . 

 Soient 1 2, ,.., nX X X des variables aléatoires indépendantes. Soit t tel que pour tout 

 1,k n , ( )
kXG t  existe. Alors 

1 ... ( )
NX XG t   est défini et 

1 ...
1

( ) ( )
N k

n

X X X
k

G t G t 


 . 

 
D) Lois usuelles  
 
Lois usuelles finies : Ici,  nxxxX ...,)( 21  est fini.  

 X  suit une loi uniforme sur  1, n  si et seulement si :   1
1, , ( )k n P X k

n
    .  

 X suit une loi de Bernoulli ( )B p  de paramètre  0,1p  si  1,0)( X  et 

( 1)P X p  .  On a alors ( 0) 1P X p   .  

 Soit  0,1p  et *n . X suit une loi binomiale ( , )B n p si et seulement si 

 ( ) 0,X n  et que pour 0 k n  , ( ) (1 )k n kn
P X k p p

k
 

   
 

. 

 Si 1 2, ,.., nX X X sont de même loi de Bernoulli de paramètre  0,1p et sont 

indépendantes, alors 1 2 ...n nS X X X     suit une loi binomiale ( , )B n p . 
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Loi de Poisson. Soit ,X Y  deux variables aléatoires réelles discrètes sur  .  

 X suit une loi de Poisson de paramètre 0   , notée ( )P   si et seulement si  X     et 

, ( )
!

n

n P X n e
n

     .  

 
Loi géométrique. Soit  0,1p . Soit X une variable aléatoire réelle discrète sur  . On dit 

que X suit une loi géométrique de paramètre p , notée ( )G p si et seulement si   *X   et 
* 1, ( ) (1 )nn P X n p p     .  

C’est la loi du temps d’attente d’un premier succès.  
On a en particulier pour *n  : ( ) (1 )nP X n p    
 
 
Tableau récapitulatif : (avec 1q p  ) 
 

 

   

 
( 1)

* 1
2

( ) ( ) ( ) ( ) ( )

( ) 0,1 (1 ) 1

( , ) 0, (1 ) (1 ) 1

1 1
( ) 1,

2

( )
!

1
( )

1

X

nk n k

k
t

n

Loi X P X k E X V X G t

B p p p p pt p

n
B n p n p p np np p pt p

k

n
U n n

n

e
P e

k
q pt

G p pq
p p qt


  








 
  

 
    

 







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Kit de survie : Analyse 
 

Les DL à connaître (lorsque x tend vers 0) 

 
2

1 ..... ( )
2! !

n
x nx x

e x o x
n

       

 2 31
1 ...... ( )

1
n nx x x x o x

x
      


 

 
2 3 1( 1)

ln (1 ) .... ( )
2 3

n n
nx x x

x x o x
n


        

 
2( 1) ( 1).....( 1)

(1 ) 1 ..... ( )
2! !

n
nx n x

x x o x
n

         
        pour   . 

 
2 4 2

2 1cos ( ) 1 ..... ( 1) ( )
2! 4! (2 )!

n
n nx x x

x o x
n

       

 
3 5 2 1

2 2sin ( ) ..... ( 1) ( )
3! 5! (2 1)!

n
n nx x x

x x o x
n


     


 

 
3

4tan ( ) ( )
3

x
x x o x    

 
3 2 1

2 1

0
tan ( ) ... ( 1) ( )

3 2 1

n
n n

x

x x
Arc x x o x

n





     


 

 
2 4 2

2 1( ) 1 ..... ( )
2! 4! (2 )!

n
nx x x

ch x o x
n

      

 
3 5 2 1

2 2( ) ..... ( )
3! 5! (2 1)!

n
nx x x

sh x x o x
n


     


 

 
Quelques primitives :  

Ici, f désigne une fonction d'une variable réelle et F  une primitive de f . 
u  est une fonction d’une variable réelle, dérivable et à valeurs réelles.  

 

1. si  
1

\ 1 , ( ) ,   ( )
1

a
a x

a f x x F x
a



   


  

2. si  \ 1 ,a      1
( )

( ) '( ) ( ) ,  ( )
1

a
a u x

f x u x u x F x
a



 


 

3. si  u ne s’annule pas, 
'( )

( ) ,   ( ) ln ( )
( )

u x
f x F x u x

u x
   

4. Si *a , 
1

( ) , ( )ax axf x e F x e
a

   

5. ( ) ln( ), ( ) ln( )f x x F x x x x    

6. 
2

1
( ) ,  ( ) sin( )

1
f x F x Arc x

x
 


 

7. Soit *a . Si
2 2

1 1
( ) , ( ) tan( )

x
f x F x Arc

x a a a
 


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Quelques formules de trigonométrie : 
 
 
Pour tous réels x et y, on a : 

 sin(2 ) 2cos( )sin( )x x x  

 2 1 cos (2 )
cos

2

x
x


  

 2 1 cos (2 )
sin

2

x
x


  

  )cos()cos(
2
1)cos().cos( yxyxyx   

 cos( ) cos( ) cos( ) sin( )sin( )x y x y x y    

 sin( ) sin( ) cos( ) cos( ) sin( )x y x y x y    

 
Les DSE à connaître  

 
Sur   

 
0

,
!

n
z

n

z
z e

n





    

 Si 1z  , 
0

1

1
n

n

z
z






   

Sur   
 

    
1

1,1 , ln 1
n

n

x
x x

n





       et  
1

1

( 1)
ln 1

n n

n

x
x

n






   

  
2 1

0

( 1)
1,1 ,arctan( )

2 1

n n

n

x
x x

n






   

  

  
0

(
, 1,1

1).....(
(,

1)
1 )

!
n

n

n
x

n
x x    






   
 

   

 
2

0

,cos( ) ( 1)
(2 )!

n
n

n

x
x x

n





     

 
2

0

, ( )
(2 )!

n

n

x
x ch x

n





    

 
2 1

0

,sin( ) ( 1)
(2 1)!

n
n

n

x
x x

n





   
  

 
2 1

0

, ( )
(2 1)!

n

n

x
x sh x

n





  
  

  
 

1
2

1 0

1
1,1 , ( 1)

1
n n

n n

x n x n x
x

 


 

     


   
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1) Complexes 
 
Formule du binôme de Newton. Soit a,b deux complexes et n un entier naturel. Alors 

0

( )
n

n k n k

k

n
a b a b

k




 
   

 
  

 
Angle moitié : pour trouver l’expression trigonométrique d’une somme (ou d’une différence), 
on utilise souvent la méthode de « l’angle moitié ».  

Ainsi, si ,a b , 
( ) ( ) ( ) ( )

2 2 2 22 sin
2

a b a b b a a b
i i i iia ib a b

e e e e e i e
            

  
.  

 
Racines n-èmes : soit *n .  

 L’équation 1nz   admet n solutions distinctes dans  . Ce sont les 
2

ik
n

k e


  avec

0 1k n   . On les appelle les racines n-ièmes de l’unité.  

 Si *iZ re   , avec *r   et   , alors l’équation nz Z  admet n solutions 

distinctes dans  . Ce sont les 
1 2

.
i ik

n n n
kz r e e

 

 , avec 0 1k n   .  

 
Inégalités triangulaires : soit *n et soient 1 2, ,..., , , 'nz z z z z  . Alors : 

1) ' 'z z z z    et ' 'z z z z    .  

2) ' 'z z z z     

3) 
1 1

n n

i i
i i

z z
 

   

 
2) Fonctions : continuité et dérivation.  

 
Partie entière : soit x  un réel. Il existe un unique entier relatif p tel que 1p x p   . p est 

appelé partie entière de x et est noté x    ou ( )E x . On a alors 1x x x      .  

 
Propriétés : des inégalités utiles.  

  1, , ln (1 )x x x        

 , 1xx e x    . 

 , sinx x x    

  2 21
, ,

2
a b ab a b    .  

Croissance comparée : On considère , 0   . On a alors

0

(ln )
0

ln 0

x

x

x

x

x x















. 

0

x

x

x

x

e

x

x e





 





 


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Fonctions usuelles :  

 sinArc est continue sur  1,1 , dérivable sur  1,1 , à valeurs dans ,
2 2

    
. On a 

 
2

1
1,1 ,Arcsin'( )

1
x x

x
   


.  

 tanArc  est impaire, dérivable sur  à valeurs dans ,
2 2

    
. On a :  

Arctan(0) 0  ; Arctan(1)
4


  et Arctan( )

2x
x



  et 

2

1
,Arctan'( )

1
x x

x
  


  

 
 
Théorème des valeurs intermédiaires : soit f une fonction continue sur un intervalle I  de 
 . Soit ,a b I . Alors si t  est compris entre ( )f a  et ( )f b , alors il existe c compris entre a et 
b  tel que ( )f c t . En particulier, lorsque ( ). ( ) 0f a f b  , f s’annule entre a et b .  
 
Théorème de la bijection (exemple) : si f est continue, strictement croissante sur *

 , à 

valeurs réelles et 
0

( ) 1
x

f x


  et ( )
x

f x

  , alors pour tout  1,t  , l’équation  ( )f x t  

admet une unique solution x dans *
 .  

 
Dérivée de la réciproque. 
Soit f C  sur I, strictement monotone donc bijective de I sur ( )J f I . On suppose aussi 

, '( ) 0a I f a   . Alors 1f  est C  sur ( )J f I  et    
1

1

1
, '( )

' ( )
b J f b

f f b



    

 
Théorème des bornes atteintes : soient a et b deux réels, avec a b , et f  continue sur le 
segment  ba, , à valeurs réelles. Alors f est bornée et admet un minimum m et son maximum 

M sur  ba, .  
 
Formule de Leibniz : soit 1n . Soient f et g deux fonctions nC  sur I , alors f g est nC  sur I 

et on a ( ) ( ) ( )

0

( )
n

n k n k

k

n
f g f g

k




 
  

 
  

 
Théorème de Rolle : soit ,a b  tels que a b . On suppose que f est à valeurs réelles, 

continue sur  ba, , dérivable sur  ,a b  et que )()( bfaf  . Alors il existe  ,c a b tel que 

' ( ) 0f c  . 
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Théorème des accroissements finis : soit ,a b  tels que a b . On suppose que f   est à 

valeurs réelles, continue sur  ba, , dérivable sur  ,a b . Alors il existe  ,c a b tel que 

( ) ( )
'( )

f b f a
f c

b a





 

 
Inégalité des accroissements finis : soit f  une fonction dérivable sur un intervalle I  de  . 

On suppose , , '( )M x I f x M      Alors , , ( ) ( )x y I f x f y M x y     .   

 
Inégalité de Taylor-Lagrange : Soit n  ; soit f une fonction de classe 1nC  sur un intervalle 
I , à valeurs réelles ou complexes. Soit ,a b I . On suppose qu’il existe 1nM   tel que 

( 1)
1, ( )n

nx I f x M
   . Alors 

1

( )
1

0

( )
( ) ( )

! ( 1)!

nkn
k

n
k

b ab a
f b f a M

k n







 

 . 

 
Théorème de la limite de la dérivée. Soit f  une fonction continue sur un intervalle I  de  . 
Soit a I . On suppose que : 

- f est continue sur I  

- f  est dérivable sur  \I a . 

- '( )
x a

f x l

   

Alors 
( ) ( )

x a

f x f a
l

x a 





. En particulier, f est dérivable en a et 'f est continue en a .  

 
Fonction convexe : Soit f   une fonction définie sur un intervalle I  à valeurs réelles. On note 
C  la courbe représentative de f .  

 f est convexe sur I si et seulement si  

 2
1 2 1 2 1 2( , ) , 0,1 , ((1 ) ) (1 ) ( ) ( )x x I f x x f x f x              

  « L’image de la moyenne est plus petite que la moyenne des images »  
 Si f convexe et dérivable sur I . Alors C est au-dessus de ses tangentes : 

, , ( ) ( ) ( ) '( )a x I f x f a x a f a      et en dessous de ses cordes (ou sécantes), qui sont 
les segments qui relient deux points de la courbe.  

 Si f est deux fois dérivable sur I , f est convexe si et seulement si , "( ) 0x I f x    

 
 f  est concave sur I si et seulement si  f  est convexe sur I . On a les mêmes 

résultats avec des inégalités dans l’autre sens.  
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Fonctions équivalentes en a  : on a trois manières de traduire que deux fonctions f et g sont 

équivalentes en a  (ou que deux suites ( )nU et ( )nV sont équivalentes en  ) ;  

 
( )

1
( ) x a

f x

g x 
  (ou 1n

n
n

U

V 
 ) 

 Il existe une fonction h  définie sur I telle que ( ) 1
x a

h x

  et f g h  au voisinage de a .  

(ou il existe ( )nW  telle que 1n
n

W

  et n n nU V W  pour n assez grand).  

 ( ) ( ) ( ( ))
x a

f x g x o g x

   (ou ( )n n nn

U V o V

  ) 

 
DL d’une primitive. On suppose que a I et que f admet un ( )nDL a . On suppose aussi que 

f admet une primitive F  sur I . Alors F admet un développement limité à l'ordre 1n  en a .  

Si
0

0

( ) ( )
n

k n
k

h
k

f a h a h o h




   , alors 1 1

0
0

( ) ( ) ( )
1

n
k nk

h
k

a
F a h F a h o h

k
 




   
 . 

 
Formule de Taylor-Young : Si f est de classe nC sur I , et si Ia , alors f admet un 

développement limité à l’ordre n en a donné par ( )

0
0

( ) ( ) ( )
!

kn
k n

h
k

h
f a h f a o h

k


   , avec 

0
x a

h x a


   .  On a aussi  ( )

0

( )
( ) ( ) ( )

!

kn
k n

x a
k

x a
f x f a o x a

k



   . 

 
3) Suites et série de nombres et de fonctions.  

 
Définition de limite : K   ou  .  

 Soit a K . n
n

x a

  si et seulement si 0, , , nN n N x a         .  

 Soit )( nx une suite réelle. n
n

x

  si et seulement si 0, , , nA N n N x A       .  

 
Théorème de la limite monotone :  soit )( nx une suite réelle.  

 On suppose que )( nx est croissante et majorée. Alors la suite )( nx  est convergente.  

 On suppose que )( nx est croissante et ne converge pas. Alors n
n

x

   . 

 
Suites adjacentes : Deux suites réelles ( )na et ( )nb  sont adjacentes si et seulement si l’une est 

croissante, l’autre décroissante et 0n n
n

a b


  . Elles convergent alors vers la même limite.  

 
Suites récurrentes linéaires d’ordre 2  : soit ( )nU K  . Soit ,a b K  tels que ( , ) (0,0)a b 

. Soit  2 1, , n n nS U K n U aU bU        . Alors on étudie l’équation 2( ) :C x a x b  . 

 Si ( )C  admet deux solutions distinctes , K   , alors 

 , , , , n n
nS U K A B K n U A B           

 si ( )C  admet une racine double K  , alors 

 , , , , ( ) n
nS U K A B K n U A Bn          . 
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Limites possibles d’une suite récurrente : on considère 0U c D    et :f D D . On 

considère la suite définie par 1, ( )n nn U f U   . On suppose que f est continue en 

a D  et que )( nU converge vers a . Alors ( )f a a .  

 
Passage des inégalités à la limite : soit )( nU , )( nV  deux suites réelles. On suppose que 

n
n

U a

 et n

n
V b


 . On suppose aussi , , n nN n N U V      . Alors a b . 

 
Théorème d’encadrement pour les équivalents : soient )( nU , )( nV )( nW trois suites. On 

suppose n n
n

V W

 et , , n n nN n N V U W      . Alors n nn

U V

  

 

Formule de Stirling : ! 2
n

n

n
n n

e




 
 
 

  

 
Croissance comparée, si , 0    et 1a   : 

(ln ) ( )
n

n o n 


  ; ( )n

n
n o e 


  ; ( )n

n
n o a


  ; ( !)n

n
a o n


 . 

 

Convergence d’une série : soit ( )nU K  . Pour n , on pose
0

n

n k
k

S U


 . La série nU
est convergente si et seulement si la suite ( )nS est convergente. En cas de convergence,  

 
0

limk n
n

k

U S





  désigne sa somme (c’est donc un nombre).  

 
0 0 1

n

n k k k
k k k n

R U U U
 

   

     est le reste de la série. On a alors 0n
n

R

 . 

 
Lien suite-série : soit ( )nU une suite d’éléments de K . Alors ( )nU  est convergente si et 

seulement si la série 1
1

( )n n
n

U U 


 est convergente. 

 
Théorème spécial des séries alternées (TSSA) : on considère une série alternée nU . On 

suppose que  nU  est décroissante et converge vers 0. Alors nU  converge. De plus, si on 

note alors 
1

n k
k n

R U


 

  , alors nR a même signe que 1nU   et 1, n nn R U    . 

 

Séries de Riemann : Soit   . 
1

1

n n

 converge si et seulement si 1  .  
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Sommes géométriques : soit q  et 0n  .  

 On suppose 1q   et 0n n . Alors 
0

0

0

11

1

n nn
nk

k n

q
q q

q

 






 . 

 Si ,a b  et *n , alors 
1

1

0

( )
n

n n k n k

k

a b a b a b


 



     

 nq converge si et seulement si 1.q  Alors 
0

0
1

n
n

n n

q
q

q






  et 

1

1 1

n
k

n
k n

q
R q

q



 

 
 .  

 
Définition : n

n

U est dite absolument convergente (on dit aussi que ( )nU  est sommable) si la 

série n
n

U est convergente. Si n
n

U est absolument convergente, alors n
n

U est convergente.  

 
Méthode de comparaison série-intégrale : soit f une fonction continue sur  0, , 

monotone, positive, Si on peut trouver une primitive de f , on peut utiliser ( )f t dt pour 

estimer ( )f n .  

 
Produit de Cauchy : soit nU et nV deux séries absolument convergentes. Soit 

0

n

n p n p
p

W U V 


  . Alors nW  converge absolument et on a 
0 0 0

n p q
n p q

W U V
  

  

   
   
   

   .  

 
Résultats de convergence :  

 Si ,0 n nn U V     et que n
n

V converge, alors n
n

U converge.  

 On suppose n nU V

  et nV  de signe fixe.  Alors n

n

U et n
n

V  ont même nature.  

 On suppose , nn U    , et , nn V     . On suppose que ( )n nU O V (c’est 

en particulier le cas si ( )n nU o V ). Si n
n

V converge, alors n
n

U est absolument 

convergente, donc convergente.  

 Règle de d’Alembert : Si , 0nn U    et  1n

n
n

U
a

U



    .  

Si 0 1a  , alors nU converge. Si 1a  , alors nU diverge grossièrement.  

 
Convergence d’une suite de fonctions : soit ( )n nf une suite de fonctions.  

 Elle converge simplement vers f sur I si et seulement si , ( ) ( )n
n

x I f x f x


   (on 

fixe x et on regarde la limite de ( )nf x lorsque n tend vers l’infini).   

 elle converge uniformément vers f sur I si et seulement si pour n assez grand, la 

fonction nf f est bornée sur I et 0n
n

f f
 

  .   

 La convergence uniforme entraîne la convergence simple.  
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Continuité de la limite : soit ( )n nf une suite de fonctions continues qui converge 

uniformément vers f  sur I . Alors f est continue sur I .  
 
Permutation limite-intégrale : deux possibilités.  

 Sur un segment  ,I a b , avec a b . Si chaque nf  est continue et que ( )n nf   

converge uniformément vers f sur I , alors ( ) ( )
b b

n
n

a a

f t dt f t dt

  .  

 Sur un intervalle I quelconque (Théorème de convergence dominée). On suppose : 
- ( )n nf   converge simplement sur I vers f  

- il existe   intégrable sur I telle que , , ( ) ( )nt I n f t t      (domination).  

- Les nf  et f  sont continues par morceaux sur I (accessoire).  

Alors les nf  et f sont intégrables sur I et ( ) ( )n
n

I I

f t dt f t dt

  .  

 
Modes de convergence d’une série de fonctions : soit ( )n nU une suite de fonctions sur I à 

valeurs dans K . La série de fonctions nU  :  

 converge simplement sur I si et seulement si chaque élément x fixé de I , la série 

( )nU x  est convergente. On peut alors définir S  sur I par 
0

, ( ) ( )n
n

x I S x U x




    

 converge uniformément sur I  si et seulement si elle converge simplement sur I et que 

si on note 
1

( ) ( )n k
k n

R x U x


 

  pour x I , on a 
,

0n I n
R

 
 .  

 converge normalement sur I si et seulement si pour tout n , la fonction nU est 

bornée sur I , et que la série nU
 est convergente.  

 La convergence normale sur I entraîne la convergence uniforme qui entraîne la 
convergence simple sur I .  

 si nU


ne tend pas vers 0, alors la série nU ne converge pas uniformément sur I , 

 
Continuité de la somme d’une série de fonctions : soit ( )n nU une suite de fonctions de I

dans K . On suppose que :  
 Chaque nU est continue sur I .  

 nU converge uniformément vers 
0

n
n

S U




  sur I   

Alors S est continue sur I .  
Il suffit d’avoir la convergence uniforme sur tout segment de I . 
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Théorème de la double limite : soit, pour tout n , une fonction nU de I dans K . Soit a

une borne de I qui peut être finie ou infinie. On suppose que : 
 nU converge uniformément sur I (ou sur J I contenant un voisinage de a ) 

 Pour tout n , ( )n n
x a

U x W K

   

Alors : nW converge et 
0 0

( )n n
x a

n n

U x W
 


 

   

 
Dérivation : soit ( )n nU  une suite de fonctions de I dans K . Soit *k . On suppose que : 

 Chaque fonction nU est kC sur I .  

 Pour tout  0, 1i k  , ( )i
nU converge simplement sur I .  

 ( )k
nU converge uniformément sur I . 

Alors 
0

n
n

S U




 est de classe kC sur I et   ( ) ( )

0

, 1, , ( ) ( )i i
n

n

x I i k S x U x




     .  

Il suffit d’avoir la convergence uniforme sur tout segment de I . 
 
 
Permutation série-intégrale : soit nU une série de fonctions définies sur I . 

 Si chaque nU  est continue et que nU converge uniformément vers 
0

n
n

S U




 sur un 

segment  ,I a b , alors ( )
b

n

a

U t dt
 
 
 

   converge et 
0 0

( ) ( )
b b

n n
n na a

U t dt U t dt
 

 

   
   

  
   .  

 Sur un intervalle I quelconque : théorème d’intégration terme à terme. On suppose : 

- nU converge simplement vers
0

n
n

S U




 sur I ,  

- Chaque nU est intégrable sur I , 

- La série ( )n

I

U t dt converge (hypothèse clé).  

- S continue par morceaux sur I (accessoire).  

Alors S est intégrable sur I , ( )n

I

U t dt converge, et 
0 0

( ) ( )n n
n nI I

U t dt U t dt
 

 

   
   

  
    

 
4) Intégration. Intégrales impropres et intégrales à paramètres.  

 
On prend K   ou  . Soit I un intervalle non vide de  , non réduit à un point. 
 
Formule de Taylor avec reste intégral : soient ,a b I , et soit f une fonction de classe 1nC  

sur I   à valeurs dans K    ou  . Alors  
( )

( 1)

0

( ) ( )
( ) ( ) ( )

! !

bk nn
k n

k a

f a b t
f b b a f t dt

k n





     
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Sommes de Riemann : soit f une fonction continue sur  ba, , avec ,a b  et a b . Alors 
1

0

( ) ( ) ( )
bn

n
n

j a

b a b a
R f f a j f t dt

n n






 
    .  

En particulier, 
11

0 0

1
( ) ( )

n

n
j

j
f f t dt

n n






   et 
1

1 0

1
( ) ( )

n

n
j

j
f f t dt

n n 


   

 
Théorème fondamental. soit f une fonction continue sur I  à valeurs dans K . Soit Ia . 

Alors f admet une primitive sur I  et F définie par 
x

a

dttfxF )()( est la primitive de f qui 

s’annule en a . En particulier, 'F f .  
 
Convergence des intégrales et intégrabilité : Soit f continue par morceaux de I dans K .  

 f est intégrable sur I si et seulement si ( )
I

f t dt  converge ( ( )
I

f t dt  converge 

absolument).  

 Si f est intégrable sur I , alors ( )
I

f t dt  converge.  

 Si f est de signe fixe sur I , alors ( f intégrable sur I )  ( ( )
I

f t dt  converge).  

 
Théorème de changement de variable. L’important est de savoir faire en pratique et d’avoir 
compris que les deux intégrales ont même nature et sont égales si une des deux converge.  
 
Intégration par parties. Soient f et g des fonctions de classe 1C  sur I , un intervalle 

d’extrémités ,a b . On suppose que fg admet des limites finies en a  et en b . Alors les 

intégrales ' ( ) ( )
b

a

f t g t dt et ( ) '( )
b

a

f t g t dt ont même nature et lorsqu’une des deux converge, on 

a l’égalité  ' ( ) ( ) ( ) ( ) ( ) '( )
b b

b

a
a a

f t g t dt f x g x f t g t dt   .  

 
Fonction continue, positive, d’intégrale nulle : soit :f I   .  

Si f est intégrable, positive et continue sur I et ( ) 0
I

f t dt  , alors , ( ) 0t I f t   . 

 
Intégrales de référence : soit   . Alors : 

  
1

t
t

  est intégrable en 0  si et seulement si 1   

 
1

t
t

  est intégrable en    si et seulement si 1   

 ln( )t t est intégrable en 0  

 tt e   est intégrable en   si et seulement si 0  .  

 On prend ici  ,I a b  ou  ,I a b . Alors f est intégrable en a si et seulement si 

( )h f a h  est intégrable en 0 . De même en b .  
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Outils pour étudier la convergence de ( )
b

a

f t d t , ,a b bornes de I . 

 On commence par dire que f est continue (par morceaux) sur I .  

 On étudie ce qui se passe aux bornes de l’intervalle qui ne sont pas contenues dans I .  
 Si ( ) ( )

x b
f x g x


 , g est intégrable en b  si et seulement si f est intégrable en b . 

 Si  ( ) ( )
x b

f x O g x

 ou  ( ) ( )

x b
f x o g x


  et g est intégrable en b , alors f est intégrable 

en b .  
 Si ,0 ( ) ( )t I f t g t     et g est intégrable sur I , alors f est intégrable sur I .  

 
Continuité des intégrales à paramètres : On suppose que : 

1) Pour tout t I , ( , )x g x t est continue sur A .  

2) Il existe une fonction   intégrable sur I telle que , , ( , ) ( )x A t I g x t t      

(domination, hypothèse clé).   
3) Pour tout x A , ( , )t g x t est continue par morceaux sur I  (accessoire).  

Alors la fonction f  : ( , )
J

x g x t dt est définie et continue sur I .  

Il suffit d’avoir la domination pour tout  ,x a b , avec a b  éléments quelconques dans A . 

 
Dérivation des intégrales à paramètres : Soit *n . On suppose que : 

1) Pour tout t I , ( , )x g x t est nC  sur A . 

2) Pour tout  0, 1k n  , pour tout x A , ( , )
k

k

g
t x t

x




  est intégrable sur I .  

3) Il existe une fonction   intégrable sur I telle que , , ( , ) ( )
n

n

g
t I x A x t t

x


    


( Il 

suffit d’avoir cette domination sur tout segment ,a b A ).  

4) Pour tout x A , ( , )
n

n

g
t x t

x




 est continue par morceaux sur J (accessoire)  

Alors f  : ( , )
J

x g x t dt  est définie et nC  sur I  et   ( )1, , ( ) ( , )
k

k
k

J

g
k n f x x t dt

x


  

  

 
Théorème de convergence dominée à paramètre continu : soient ,A I deux intervalles de   

et a  une extrémité, finie ou infinie, de A . Soit :
( , ) ( , )

A I K
g

x t g x t

 


. On suppose que : 

 , ( , ) ( )
x a

t I g x t l t


    

 Il existe une fonction  intégrable sur I telle que ( , ) , ( , ) ( )x t A I g x t t     (si 
*I    et a   , il suffit d’avoir cette domination pour  ,x c  , avec 0c  ) 

 Pour tout x A , ( , )t g x t  et ( )t l t  sont continues par morceaux sur I (accessoire) 

Alors l est intégrable sur I et ( , ) ( )
x a

I I

g x t dt l t dt

  . 
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5) Séries entières et équations différentielles  
 
Rayon de convergence d’une série entière : Soit ( )na   . Soit n

n
n

a z




 une série entière.  

Le rayon de convergence R de n
n

n

a z




 est    sup , ( ) est bornéen
nR r a r       . 

 Si z R , n
n

n

a z




converge absolument.  

 Si z R , alors ( )n
na z  n’est pas bornée et n

n
n

a z




est grossièrement divergente.  

 Si z R , tout est possible.  

 
Outils pour trouver le rayon de convergence R  d’une série entière n

n
n

a z




. Soit 0r  .  

 Utiliser la règle de d’Alembert si tous les na  sont non nuls : si 1n

n
n

a
b

a



  , alors 

1
R

b
  si *b  , et R    si 0b  .  

 Si  n
na r est bornée, alors R r  et si  n

na r ne tend pas vers 0, alors R r  

 Si n na b , alors n n
n n

n n

R a z R b z
 

      
   
 
 

.  

 
Produit de Cauchy de deux séries entières.  
Soient n

n
n

a z




et n
n

n

b z




deux séries entières de rayons respectifs aR et bR .  

On note R le rayon de convergence de la série entière n
n

n

c z




, avec 
0

,
n

n p n p
p

n c a b 


    

Alors min( , )a bR R R . De plus, si  min ,a bz R R , alors 
0 0 0

n p q
n p q

n p q

c z a z b z
  

  

   
   
   

    

 
Rayon de convergence et dérivation :  

 Les séries entières n
n

n

a z




et n
n

n

n a z




ont même rayon de convergence.  

 Le rayon de convergence est inchangé par dérivation ou intégration terme à terme 
 

Propriétés : Soit n
n

n

a t




, série entière de la variable réelle. On suppose 0n
n

n

R R a t


   
 



 

 Alors 1

1

: nn

n

a
F t t

n





 est une primitive de f sur  ,R R . De plus, n

n
n

a t




converge 

normalement sur tout segment de  ,R R (en particulier, on peut intégrer terme à terme 

sur tout segment     , ,c d R R  ).  
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 Pour  ,t R R  , on pose 
0

( ) n
n

n

f t a t




 . Alors f est de classe C sur  ,R R . On 

obtient les dérivées successives de f en dérivant terme à terme.  

 Il y a unicité du développement en séries entières : on a 
( )(0)

,
!

n

n

f
n a

n
    et si 

 
0 0

, , n n
n n

n n

x r r a x b x
 

 

     , alors , n nn a b   .  

 
Equations différentielles du premier ordre : ( ) : ' ( ) ( )E y a x y b x   et ( ) : ' ( )H y a x y . Soit 
A  une primitive de a.  

 L'ensemble des solutions de ( )H est donné par  KxAxHS   ))),(exp(()(  

 Les solutions de l'équation ( )E  s'obtiennent en ajoutant n'importe quelle solution 
particulière de ( )E  aux solutions de l'équation homogène ( )H .  

 Pour trouver une solution particulière de ( )E , on peut utiliser la méthode de variation 

de la constante : si  ( ) ( ( )),S H x h x K    , on cherche une solution de ( )E de 

la forme ( ) ( ) ( )f x x h x , avec  dérivable sur I .  

 Problème de Cauchy : Soit Ix 0 . Pour tout K , il existe une unique solution de 

( )E satisfaisant la condition initiale  )( 0xh . 

 
Equation homogène du second ordre à coefficients constants.  On suppose ,a b  et  

On note ( ) : " ' 0H y a y b y    et 2( ) : 0C x a x b    

 Si ( )C  admet deux solutions réelles distinctes q  et s , alors les solutions à valeurs 

réelles de l’équation ( )H sont les qt stt Ae Be  , avec ,A B .  

 Si ( )C  admet une unique solution réelle r , alors les solutions à valeurs réelles de 

l’équation ( )H sont les   rtt At B e  , avec ,A B .  

 Si ( )C  admet deux solutions complexes conjuguées ,i i     (avec 0  ), alors 

les solutions de ( )H sont les  cos sintt e A t B t    , avec ,A B .  

 
Equations avec second membre : soient , ,a b c trois fonctions continues sur un intervalle I  
de  , à valeurs dans   ou  .  On s’intéresse à l’équation ( ) : " ( ) ' ( ) ( )E y a t y b t y c t   .  
( ) : " ( ) ' ( ) 0H y a t y b t y    est l’équation homogène associée. 

 Problème de Cauchy : Soit 0t I . Soit y deux fois dérivable sur I . Soient 0 0,y v K . 

Le problème de Cauchy   0 0

0 0

 solution de ( )

: ( )

'( )

y E

P y t y

y t v


 
 

admet une unique solution.  

 Les solutions de l'équation ( )E  s'obtiennent en ajoutant n'importe quelle solution 
particulière de ( )E  aux solutions de l'équation homogène ( )H .  
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Dans la suite, on considère U  un ouvert de p  et :f U   , une application.  
 
Vecteur gradient, matrice Hessienne, développement limité : soit 1( ,.., )pa a a U  . On 

suppose que f est de classe 2C  sur U .  

 Le gradient de f  en a  est le vecteur 
1

( ) ( ),..., ( )
p

f f
f a a a

x x

  
      

. 

 La matrice Hessienne de f  en a , notée ( )fH a est définie par 

   
2

,
, 1, , ( ) ( )f i j

i j

f
i j p H a a

x x


  

 
.Avec le théorème de Schwarz,  ( )f pH a S  . 

 f  admet un développement limité à l’ordre 2 au voisinage en 1( ,.., )pa a a U  . Pour 

1 2( , ,..., ) p
ph h h h   tel que a h U  , on a : 

2

0

1
( ) ( ) ( ), ( ) ( )

2
T

fh
f a h f a f a h h H a h o h


      .  

 
Règle de la chaine : soit I  un intervalle de  . Soit :f U   , de classe 1C  sur U  et soient 

1,..., px x  des fonctions dérivables sur I  telles que  1( ),. ., . , ( )px t x t Ut I  . Soit :g I   , 

avec pour t I ,  1( ) ( ),..., ( )pg t f x t x t . Alors g  est dérivable sur I , et on a 

 1
1

, '( ) ( ),..., ( ) '( )
p

p j
j j

f
t I g t x t x t x t

x


  

 .  

 
Extrema locaux et points critiques : on suppose que f  est de classe 2C sur l’ouvert U . Soit 
a U .  

 a  est un point critique si et seulement si ( ) 0f a  .  

 Si f  admet un extremum local en a , alors a est un point critique.  

 Si a  est un point critique, alors : 
- Lorsque ( )fH a possède une valeur propre strictement négative et une autre 

strictement positive, il n’y a pas d’extremum local en a . 
- Si toutes les valeurs propres de ( )fH a sont strictement positives, il y a un 

minimum local strict en a .  
- Si toutes les valeurs propres de ( )fH a sont strictement négatives, il y a un 

maximum local strict en a .  

- Lorsque  ( )fSp H a   (ou que  ( )fSp H a   ), et que 0 est valeur propre 

de ( )fH a , on ne peut pas conclure.  

 


