Kit de survie : algebre linéaire
Dans la suite, K =R ou C.

A) Polynomes

Division euclidienne : soient 4 et B deux ¢léments de K [X ] On suppose que B n'est pas le
polyndme nul. Alors il existe un unique (Q,R) € K [X ]2 tels que

e A=BO+R

e deg(R) < deg(B)

Multiplicité d’une racine : soita € Ket Pe K[X].

e ¢ est racine d’ordre (ou de multiplicité) £ de P si et seulement si une des deux
propositions équivalentes suivantes est vérifiée :

- Il existe un polyndéme Q tel que P = (X —a)* Q, avec O(a) #0.
- Vie [[O,k —1]],P(i) (@)=0,P(a)#0

e Soit Pe ]R[X] . Soit ne N". On suppose que a est une racine d’ordre 7 de P dans C .
Alors g est aussi racine d’ordre n de P dans C .

e On suppose que mult(a,P)=neN" (a est racine de multiplicité n de P). Alors
mult(a,P)=n—-1.

e ¢ estracine multiple de P si et seulement si P(a)=P'(a)=0

Nombre de racines d’un polynome :
e SiPek, [X] \ {0} (deg(P)<n et Pnon nul), alors P admet au maximum #» racines

comptées avec leur multiplicité.

e Siun polynéme P a une infinité de racines distinctes, alors P=0.

e Onsuppose que P est de degré n e N . Si on trouve n racines distinctes de P, alors ce
sont les seules et elles sont toutes simples.

Polyndme scindé : soit P € K[X]
e P est scindé si et seulement si il est constant ou qu’il s’écrit sous la forme

k
P:/IH(X—x,. ) ,ou 1eK, keN', x,.,x, sont les racines de P, deux a deux
i=1

distinctes, telles que pour 1<i <k, la multiplicité de x, esta, = mult(x,, P).
e Tout polyndme de (C[X ] est scindé dans (C[X ] Tout polyndme P non constant de
C[X] admet au moins une racine complexe (d’Alembert-Gauss).

e Si deg(P)=neN" et que P est scindé dans K [X ] , alors P admet exactement n

racines dans K comptées avec leur multiplicité.



Relations entre coefficients et racines : soitP:ZakX “un polyndme scindé de degré
k=0

neN" tel que P=a,(X-x)..(X—x,), avecx,,...,.x, € K, non nécessairement distinctes.

N an—l - n aO
Alors Zxk =——= et H x, =(1)"—
k=1 a, k=1 a,

Décomposition en éléments simples : soient P,0 € K[X]. On suppose que deg(Q)21, que

deg(P) <deg(Q) et que QO est scindé a racines simples: il existe un entier keN’,
X, »X,,...,X, € K deux a deux distincts et 1 € K~ tels que O = /1(X—xl) (X =x,).

Alors il existe a;,...,a, € K tels que Vx e K \{x,,...,x ggx; Z( -
X—X,

. : , iy e : P
Cette décomposition est unique, C’est la décomposition en éléments simples de —.

B) Espaces vectoriels et applications linéaires

Dans la suite, E,F,G sont des K —espaces vectoriels,

Sous-espace vectoriel : Soit F — E . F est un sous-espace vectoriel de E si et seulement si :
e 0,eF

e V(x,y)eF’NVleK,x+AyeF

Familles : Une famille (x, ,xz,...,xp) d'éléments de E est

e génératrice de E lorsque tout élément de E peut s'écrire comme combinaison linéaire

des (xi)léigp ‘
e libre si et seulement siV(4,,4,,...,4,) € K”,z/li x, =0, =>4 =4 =...=4,=0)
i=1
e Siu#0, etque (u,v)est liée (c’est-a-dire non libre), alors IL e K,v=Au.
o Si(x,x,,......x,) est libre et (x,x,%,......xa) est liée (avec xeFE), alors x est
combinaison linéaire de (x,,x,,.....,X,

e Soit (P E,. P) une famille de polynomes non nuls de degrés distincts. Alors la

n

famille (P),.,., est libre.

Bases d’un espace vectoriel :
e Une base de E est une famille qui est a la fois libre et génératrice de E .
e Si dim(E)=neN", toute famille libre (ou génératrice) de n vecteurs de £ est une base
de E.

e Base incompléte : Si E est de dimension finie, toute famille libre d’¢léments de E peut
étre complétée en une base de E .



Polyndémes d’interpolation de Lagrange. Soit x, ,...,x, ,, € K, deux a deux distincts.
e Pourtoutie [[l,n +l]], il existe un unique polynéme P € K, [X] telque P (x;,)=1 et
tel queV j #i,B (x;)=0.

n+l

e B=(B...P,)estunebasede K,[X]. Deplus,si Pe K, [X],P=D P(x)F,
k=1

Pour trouver la dimension :
e Ladimension de E est le nombre d’éléments d’une base.
e S’il existe un espace vectoriel Ftel que dim(F)=peNet un isomorphisme

f:E— F,alors dim(E)=dim(F)=p.

Montrer que deux espaces vectoriels sont égaux en dimension finie : deux possibilités.
e Prouver une double inclusion.
e Montrer une inclusion et I’égalité des dimensions.

Dimension des espaces usuels :
e Soit neN. dim(K,[X])=n+1

e Soient n,peN . Alors dim(Mn’p(K)) =np.

Somme directe : soit F}, F,..., F, des sous-espaces vectoriels de £'. F,F,,...,F, sonten

P

somme directe (on la note @ F;) si et seulement si une des deux assertions équivalentes
i=1

suivantes est vérifiée :

o V(xl,xz,..,xp)e1‘71><1’72x...><Fp,(x1 tx,+.+x,=0,>x=x=..=x, =()E).

p
e Vxe ZE,H!(xl,xz,..,xp) ERXFyx.xF x=x+x,+.4+x,.
i=1
Dimension d’une somme de sous-espaces vectoriels : soit /},F),...,F, des sous-espaces
vectoriels de dimension finie de E . On suppose que pour 1<i < p, B est une base de F;.
On note B la famille de vecteurs obtenue en concaténant les vecteurs des bases B, B,,..., B, .
o dim(F +F))=dim(F)+dim(F,)—-dim(F NF,) (Formule de Grassmann)
p
o dim(F+F+..+F,)<Y dim(F)
i=l1
. p .. p
e Si @F =E,alors Bestune base de E, adaptée a la décomposition @ F; = E .
i=1

i=1 i

P
e Réciproquement, si B est une base de E , alors D F, =E
=1

1

En particulier, dim( 7 F’j = ﬁdim(Fi ).
i=1 i=1

1



Montrer que deux sous-espaces vectoriels de £ sont supplémentaires : F@G=E :
FNG={0}

dim(F)+dim (G) =dim (E)

e FEn dimension finie, F @ G = E si et seulement si en réunissant une base de F et une

base de G, on obtient une base de E'.

e En dimension quelconque, on peutprouver (souvent par analyse-synthése)
Vxe E,AN(f,g)e FxG,x=f+g

o SiFKF®F =F et xe E,onn’apas forcément xe F|; ou xeF,.

e En dimension finie, /' ® G = E si et seulement si {

Applications linéaires : soit /:E — F.
e festlinéaire si et seulement si VA e K,V(x,y) € E*, f(Ax+y)=Af(x)+ f(¥).
e  festunisomorphisme si et seulement si f est linéaire et bijective.
e festun endomorphisme de F si et seulement si f est linéaire, de E dans E = F .
e festun automorphisme de F si et seulement si f est linéaire, bijective, de E dans E .

e Une application linéaire est enticrement déterminée par I’image d’une base si I’espace
de départ est de dimension finie.
e Si Eet Fsontdedimension finie, dim(L(E, F))=dimE.dim F’

Noyau et Image : soit f € L(E,F), g € L(F,G) Alors :
e L’image de f est Im(f)z{yeF,Eler,f(x)zy}
o f e L(E,F)estsurjective si et seulement silm(f)=F .
e Lenoyaude f est Ker(f)={xeE, f(x)=0,}.
e festinjective si et seulement si Ker(f) = {0 E}
b gof:OL(E,G)@Im(f)CKer(g)-

Projections : On suppose A® B=F . Ainsisixe€ E, 3 (a,b) e AxBtelsque x=a+b.

e La projection sur 4 parallélement a B est 'endomorphisme p de £ défini par p(x) =a.

e p est alors la projection sur Im(p)=4 ={ xekE,p(x)= x} =Ker(p—1d,)
parallélement & Ker(p)=B.

e Si Eest de dimension finie, alors p est diagonalisable dans une base obtenue en
réunissant une base de 4= Ker(p—1d,)etde B = Ker(p)

e Si felL(E)vérifie fo f= [, alors E=Ker(f)®Im(f) et f est la projection sur
Im( f) parallelement a Ker(f).

Symétries : On suppose A@ B=FE. Ainsisixe€ E, I(a,b) e AxBtelsque x=a+b.
e Lasymétrie par rapporta A parallelement & B est définie par s(x)=a—b.
° seGL(E),sos=IdE,s'1=s.
o SoitfelL(E). Si fof=1Id,, alors E=Ker(f—1d,)® Ker(f+1d,) et [ estla
symétrie par rapport a A = Ker(f —Id ) parallelement a B = Ker(f +1d,).

e sest diagonalisable dans une base obtenue en réunissant une base de 4 et de B.



Formes linéaires et hyperplans : on suppose dim(E)=neN". SoitH c E .

e Une forme linéaire est une application linéaire de £ dans K .
e H estun hyperplan de E si et seulement si dim(H)=n—-1.

e Soit u une forme linéaire non nulle sur £. Alors Ker(u) est un hyperplan.

C) Matrices et applications linéaires

Soit n, p e N". On suppose dim(E) = p et dim(F)=n.
Soient B = (e,e,,...,e,)une base de E et C =(f,, f,,..., f,) une base de F.

(K) de

g dans les bases B et C est obtenue en reportant dans la j-éme colonne les coordonnées du

Matrice d’une application linéaire. Soit g € L(E,F). Lamatrice A=M, .(g)eM

np
vecteur g (e;)dans labase C : V je[l,p].g(e,)=D 4, 1.
i=1

Matrice d’une composée : soit G un espace vectoriel de dimension g € N et D base de G .
Soit u € L(E,F)et ve L(F,G). Alors M, ,(vou)=M_ ,(v).M.(u).

Produit matriciel : Soit Ae M, (K), BeM, (K) et X €M, (K).Soit g une application
linéaire g telle que M, .(g)= A4 Alors:

* ABeM, (K) etpouriec [[l,n]] et j e[[l,q]] ,(4B), ; = Zp:Ai’kBk,_i .
k=1

o AXeM, (K)etpourie[ln],(4X), =) 4,X,
k=1

e Pour trouver les coordonnées de I’image d’un vecteur x par g, on calcule AX .

e Pour trouver le noyau de g, on peut résoudre AX =0.

Rang : Soit ge L(E,F) etA= M, (2) eMﬂp(K) . Soient C| ,...,Cp les colonnes de A4
. rg(A):dim(Vect({c1 ,...,Cp}))zrg(AT).
e rg(g)=dim(Im(g)) =rg(4)
e dim(F)=rg(g)+dim(Ker(g))(théoreme du rang).
o ker(d)={XeM, (K),AX =0} et dim(Ker(4)) = p—rg(4).
e SiBeM, (K), rg(AB) < min(rg(4),rg(B))et rg(AB) =rg(A)si B est inversible.

Calculs de puissances de matrices : pour calculer 4" ,avec A€ M (K), on peut

e Calculer 4, deviner le résultat ou sa forme et le prouver par récurrence.

e Utiliser le bindme de Newton : si A=B+C,ou BC=CB, (B+(C)" = Z(:JE"CH

k=0

e Diagonaliser (ou trigonaliser) A et 1’écrire 4=P D P, puis utiliser A" =PD" P,



Inverse et transposée : Soit 4,B € GL,(K). Soient C,D e M (K) Alors :

(cD)Y =D'C”
(AB)e GL,(K) et (AB)" =B~'4™"
A" eGL(K) et (A")'=(4™"".

Matrices inversibles et bijectivité : Soit g e L(E) etA=M,(g)e M ,(K).

g est bijective si et seulement si 4 € GL,(K).On a alors A'=M,(g ™).

g est bijective si et seulement si g est injective (ou surjective).
Aest inversible si et seulement siune des conditions équivalentes suivantes est

vérifiée :

- ker(4)={0}
- rg(Ad)=p

- det(A)#0

- Les colonnes de 4 forment une famille libre dans K" .

Trace : soient 4,Be M, (K ). Alors :

tr(A)= iA”. =tr(A")
tr(AB) ;tr(BA)

Déterminant : soit 4,Be M (K). Alors :

Quand on échange deux colonnes de A4, le déterminant est multiplié par (—1).

Si une colonne de 4 est combinaison linéaire des autres, alors det(A4) =0.

si Ae K, det(A4)=A"det(A4).

Si on ajoute a une colonne de A4une combinaison linéaire des autres, alors le

déterminant est inchangé.

1
det(AB) = det(A4).det(B) etsi Ae GL, (K), det(4™')=——
det(A)
det(4”) =det(A) . Les opérations sur les lignes ont le méme effet sur le déterminant

que celles sur les colonnes.

Développement par rapport a une ligne ou une colonne : soit A€M (K) et n>2. Pour
1<i,j<n,onnoteD,  =(-1)"/ det(M(i,)), o M(i,j)e M, (K)est la matrice obtenue en

supprimant la i —émeligne et la j —eéme colonne de 4. Alors :

det(4) = Z A, ,D, ; (deéveloppement par rapport a la j —éme colonne de 4).
i=1

det(A) = z A, ;D, ;(développement par rapport a la i —eme ligne de 4).
j=1



n—1
1 xl oo xl
. . . . X, X,
Déterminant de Van der Monde. Soit n>2 . Soit x,,...,x, e KetV =| |
1 x, b

la matrice de Vandermonde. Alors ¥V est inversible si et seulement si x,,...,x, sont deux a
n o j

j-1
deux distincts. On a par ailleurs det(Vn ) = H (x;—x;) .

j=2 i=l

A B A" B'
Matrices par blocs : Soit M = , N= et A€ K. On suppose :
CcC D Cc' D'

A,A'eM (K),B,B'eM,, (K),C,C'e M
A+AA' B+ AB' AA'+BC' AB'+BD'
etM N =

(K),D,D'e M _ (K).Alors:

n-q.q9 n—q

e M+ AN=
C+AC'" D+ AD' CA+DC' CB+DD'

A B
e SiM-= [O Dj e M ,(K), est triangulaire par blocs, alors det(M ) = det(A).det(D) .

Sous-espaces stables et blocs : soit G un sous-espace vectoriel de E . Soit f,g e L(E).
e (Geststable par f sietseulementsi f(G)c G(VxeG,f(x)eG).
e Les sous-espaces propres de f sont stables par f .
e Si fog=gof,lessous-espaces propres de f sont stables par g.

e Si Bestune base adaptée a G (c’est-a-dire une base (el,..,eq ) de G complétée en une

A B
base ez(el,..,ep) de E), Geststable par f sietseulement si Me(f)z[o Dj,avec

AeM(K),BeM,, (K).,DeM, (K).

q.n—q

D) Changement de base. Réduction.

Soitn € N tel que dim(E) = n. Soient B, B' deux bases de E . Soit f € L(E)et A=M ,(f).

Eléments propres d’une application linéaire : soit f € L(E). Soit A€ K. Alors :
e Jestvaleur propre de f siseulement si il existe x # 0, tel que f(x)=Ax.
e Tout vecteur x # 0, tel que f(x)=Ax estun vecteur propre associ¢ a la valeur

propre A.
e Lorsque AeSp(f), ker(f —A1d,)est le sous-espace propre associé¢ a A

e Les sous-espaces propres de f sont en somme directe.
e L’ensemble des valeurs propres de f est appelé spectre de f et noté Sp(f).

Eléments propres d’une matrice : soit A€M, (K). Soit 1€ K. Alors :
e Jestvaleur propre de A4 siseulement siil existe X #0 telque AX =4 X.
e Tout vecteur X #0 tel que AX = 4 X est un vecteur propre associé¢ A .



e L’ensemble des valeurs propres de A est appelé spectre de A et noté¢ Sp(A4).

e le sous-espace propre associ¢ & la valeur propre A est E,(A4)=ker(A—Al,).

e (est valeur propre de 4 si et seulement si 4 n’est pas inversible. Alors E (4)=ker 4.

e Pour déterminer la dimension de E,(4)=ker(4-A1,), il suffit de trouver
rg(A—AlI,) et dutiliser le théoréme du rang.

e Si AeM (K) est une matrice triangulaire, alors les valeurs propres de A sont les
coefficients diagonaux de 4 .

D
Polyndme annulateur : soit P =) a, X" € K[X]. Soient u,ve L(E)et 4,BeM,(K).
k=0

p
e On définit P(u)e L(E) par P(u)= Zakuk =ayld, +au+auou+..+au’.

k=0
e Pestunpolynéme annulateur de u si et seulement si P(u) =0, .

P
e Ondéfinit P(4)e M, (K) par P(A) =) a, A" =al, +aA+a,A’ +..+a,A".
k=0

e P estun polynome annulateur de A si et seulement si P(A4) est la matrice nulle.
e Si P estun polyndme annulateur de 4 et A est valeur propre de 4, alors P(4)=0.

Polynome caractéristique : soit 4e M (K).

e Le polyndme caractéristique de 4 est y, défini par y,(A) = det(/IIn - A). Ses racines
sont les valeurs propres de 4 .

ey, estunitaire, de degré n,et y, = X" —Tr(A)X"" +..+(=1)" det (A4)

e Si AeSp(A4), sa multiplicité mult(/I) comme valeur propre de A est sa multiplicité
comme racine de y,.On aalors 1< dim(E,(4)) <mult(1).

e Si AeM, (R)et siAeCest valeur propre de multiplicité peN'de 4, alors A est
valeur propre de 4 de multiplicité p .

e Si AeM (C), A4 possede n valeurs propres complexes comptées avec leur

multiplicité (en particulier, 4 posséde au moins une valeur propre complexe).
e La somme des valeurs propres complexes de 4 (comptées avec leur multiplicité) est
égale a tr(A) et leur produit a det(4).

o 7,(4)=(0) (théoréme de Cayley-Hamilton).

Matrice de passage et matrices semblables : soient 4,4'e M (K),avec A=M,(f).

e Lamatrice de passage de Ba B',notée P =P, ,., est obtenue en reportant en colonnes
les coordonnées des vecteurs de la base B'dans B. SiM  (f)=4 et M, (f)=4",
alorsA=PA'P™".

e A etA'sont semblables si et seulement si il existe P e GL,(K)telle que 4=P A'P™

e AJetA'sont semblables si et seulement si elles sont les matrices d’'un méme
endomorphisme dans deux bases différentes.



e Deux matrices semblables ont méme trace, méme déterminant et méme polynome
caractéristique.
e Si Ae€K,laseule matrice semblable a A/, est A/, .

Endomorphisme diagonalisable : f est diagonalisable si et seulement si on a un des critéres

suivants :
e il existe une base B de E dans laquelle la matrice de f est diagonale ( B est ainsi

constituée de vecteurs propres de f).

s E= @ E()
AeSp(f)
o Y dim(E,(f))=dim(E).
AeSp(f)

e [l existe un polynome P €K [X ] scind¢ a racines simples, tel que P(f) =0,

Endomorphisme induit : Soient ' € L(E), et F sous-espace vectoriel de E ,stable par f .
->F

xl—)f(x)'

e Si f estdiagonalisable, alors f,. est diagonalisable.

e L’endomorphisme induit par f sur Fest f :

Matrice diagonalisable: soit A€M (K) et feL(E)tel que A=My(f). Alors Aest

diagonalisable si et seulement si on a un des critéres suivants :
e fest diagonalisable.

e A4 est semblable a une matrice diagonale.

e > dim(E,(4)=n

AeSp(4)

ey estscindé sur K et pour toute valeur propre 1 € Sp(A), mult(A)=dim(E,(4))

e [l existe un polynome P €K [X ] scindé a racines simples, tel que P(A4)=0.

Cas particuliers fondamentaux :
e Si A posséde une unique valeur propre A € K , 4 est diagonalisable si et seulement si
A=11,.
e Si AeM (K) admet n valeurs propres distinctes, alors A est diagonalisable.

e SideM, (]R) est symétrique réelle, alors A est diagonalisable sur R .

Matrice trigonalisable: soit A€M (K) et feL(E)tel que A=M,(f). Alors Aest

trigonalisable si et seulement si on a un des critéres équivalents suivants :
e A4 est semblable a une matrice triangulaire supérieure.
e [l existe une base de E dans laquelle la matrice de f est triangulaire supérieure.

oy, estscindé sur K (en particulier, dans M, (C), toute matrice est trigonalisable).



E) Produit scalaire, expaces euclidiens.

Soit £ un R -espace vectoriel.

Produit scalaire : Soit 4 une application de Ex E dans R.

e On dit que / est bilinéaire si et seulement si elle est linéaire par rapport a chacune de

h(Ax+x",y)=Ah(x,y)+h(x',y)
h(x,Ay+y")=Ah(x,y)+h(x,y")
e Ondit que % est symétrique si et seulementsi Vx,y e E,h(x,y)=h(y,x)
h(x,x)=0

ses variables (Vx,x, y,y'€e E,V A eR,{

e On dit que % est définie positive si et seulement si Vx e E ,{

h est un produit scalaire sur E si et seulement si / est symétrique, bilinéaire, définie

h(x,x)=0=>x=0,

positive.

Un espace euclidien est un R -espace vectoriel de dimension finie, muni d’un produit scalaire.

Un espace préhilbertien réel est un R -espace vectoriel muni d’un produit scalaire.

Inégalité de Cauchy-Schwarz : soit (E,<,>) un espace préhilbertien. Pour x € E
||x|| =, /<x/x> || || est une norme sur E : c’est la norme euclidienne. De plus :

o Ve eE ()| ] o
e Ilyaégalité dans (1) si et seulement si la famille (x, y)est lice.

Base orthonormée : soit (E,<,>) est un espace euclidien. Soit f € L(E). Soit (u,,
famille d’éléments de E .

e (u,..,u,)est orthonormée si et seulement si Vi, j e[, n]],<u,.,uj> =5,

e Toute famille orthonormée est libre.
e ][] existe une base orthonormée de E .
Soit B = (el,...,en) une base orthonormée de E .

SiM=My(f), x=)xe , X=My(x),y=) ye et Y=My(y).alors:
k=1 k=1

o Vie{l2,.,n},x,=(xe).
. <x,y>=zn:x,.y,.=XTY=YTX et ||x||2=i(xi)2:XTX
i=1

i=1

° Vi’jeﬂl,nﬂ,Mi,j=<f(ej)’ei>

, on note

..., U, )une

Orthogonal d’un sous-espace vectoriel : soit (E,<,>) est un espace préhilbertien. Soit 4 un

sous-espace vectoriel de £ .
e L’orthogonal de 4 dans E est défini par 4" = {x €E,Vae A,(a,x)= O} :

e SiAdlB( VxeA,VyeB,(x,y)zO), alors Ac B*

e Si(a,.,a,) estunebasede 4 etsi xe E,ona xe 4" <:>Vie{1,2,..,k},<x

e Si A4 est de dimension finie, alors 4® A" =E.

e Si E est de dimension finie, (AL)L =4

10

|al.>=0.



Projection orthogonale : Soit (E,<,>) un espace préhilbertien. Soit » un sous-espace
vectoriel de £ de dimension finie. Soit (e, ,..,e,) une base orthonormée de V.

e La projection orthogonale p, sur V' est la projection sur V' parallélementa V*.
P

e p(x)= Z<x,el. >el. (utile si on a une base orthonormée).
i=1

e La symétrie orthogonale s, par rapport a V' est la symétrie par rapport a V

parallélementa V. Ona s, =2p, —1d, .

Orthogonalisation de Gram-Schmidt : Soit (e ,...,e,)une famille libre d’éléments d’un
espace préhilbertien. Alors il existe une famille orthogonale (f, ,..., f, ) de vecteurs non nuls
tels que Vi e[[l,n]],Vect(el,...,ek) = Vect(fl,...,fk). De plus, si on note F, = Vect(el,...,ek),

on peut prendre f,,, =€, — Py, (e.,) ,ou Py, est la projection orthogonale sur F; .

Distance a un sous-espace vectoriel : Soit (E,<,>) un espace préhilbertien. Soit / un sous-

espace vectoriel de E, de dimension finie. Soitxe £. La distance de x a V est

. 2 2
d(x,V)=inf(jx-v])= ”x ~p, (x)". Avec Pythagore, d*(x,V) = x| —|| P, (x)” .

Matrices orthogonales : soit M € M (R).Soit (C,,...,C,)les colonnesde M et (L ,...,L,) ses

lignes.
e M est une matrice orthogonale (on note M € O,(R)) si et seulement si M"M =1, ce

qui équivaut aussi a(C,,...,C, ) est une base orthonormée de R” , ouencorea (L,,...,L,)

est une base orthonormée de R” pour le produit scalaire usuel.
e Lamatrice de passage d’une base orthonormée a une autre est une matrice orthogonale.

e Si MeO,(R),alors |det(M )| =1 (la réciproque est fausse).

Isométries : Soit B = (el,...,en)une base orthonormée de E euclidien. Soit f € L(E). f est

une isométrie de £ (on note f € O(E)) si et seulement si une des conditions équivalentes
suivantes est satisfaite :
e fconserve la norme : Ver,” f(x)|| =|| x||

e fconserve le produit scalaire : Vx,y € E,(f(x), f(»))=(x,»)

e f(B)= (f(el),...,f(en )) est orthonormée.
* My(f)€O,R).

Sous-espaces stables : soit f € O(E). Soit F un sous-espace vectoriel de E, stable par f.
Alors f(F)=F et F*eststable par f .
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Groupe orthogonal en dimension 2 : les éléments de O,(R) sont (avec R ) :
cos(#) —sin(6)

e Les matrices de rotations R, =|
sin(@) cos(d)

j, qui sont les ¢léments de SO, (R).

. Less, :(cos(ﬁ) sin(0) j

sin(@) —cos(0)

Lorsque 6 # O[/Z] , les matrices de rotations n’admettent pas de valeur propre réelle.

Endomorphismes autoadjoints ou symétriques (ne pas confondre avec les symétries) : Soit
B une base orthonormée de E euclidien. Soit f € L(E). Soit A=M ,(f)

f est autoadjoint si et seulement si une des conditions équivalentes suivantes est satisfaite :
o Vx,yeE(f(x),y)=(x/(»).
o A=My(f)eS,(R) (ouencore A=A").

Projecteurs autoadjoints : soit pe L(E)un projecteur. Alors pest autoadjoint si et
seulement si p est une projection orthogonale.

Théoréme spectral :
e feL(E).On suppose que f est autoadjoint. Alors f est diagonalisable et il existe

une base orthonormée de vecteurs propres de f .

e Soit A€ S, (R) , symétrique réelle. Alors A est diagonalisable et il existe une matrice
D e M, (R)diagonale et une matrice P e O,(R)telles que A=PDP~ =PDP".

Endomorphismes autoadjoints positifs ou définis positifs : Soit / € S(E), autoadjoint.
e fest autoadjoint positif (on note f € S*(E)) si et seulement si une des conditions
équivalentes suivantes est satisfaite :
- VxeE,(f(x),x)>0.
- Sp(fHcR,.
e fest autoadjoint défini positif (on note f €S (E)) si et seulement si une des

conditions équivalentes suivantes est satisfaite :
- Ver\{OE},<f(x),x>>0.

- Sp(fcR,.

Matrices symétriques définies positives ou définies positives : Soit B une base orthonormée
de E euclidien. Soit f € S(E), autoadjoint. Soit A=M,(f)e S, (R) , symétrique.
e 4 est symétrique positive (on note 4 €S, (R)) si et seulement si une des conditions
équivalentes suivantes est satisfaite :
- Sp(A)cR,
- VX eR",X'4X >0
- [eSU(E)
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e Aest symétrique définie positive (on note 4 €S, (R)) si et seulement si une des
conditions équivalentes suivantes est satisfaite :
- Sp(A)cR,
- VX eR"\{0},X"4X >0
- feST(E)

F) Espaces vectoriels normés

Norme : soit £ un R —espace vectoriel et N une application de E dans R. Alors N est une
norme sur E si et seulement si :
e YueE,Nu)=0

e VYVueENu)=0=>u=0,
o VueENVAeR N(Au)=|AN(u)
e VYu,veE N(u+v)<N(u)+ N(v) (Inégalité triangulaire)

—> 0

n—>+0o

Suite : Soit une suite (x,)d’élémentsde E et ac £. x, > a< Hx” —a

n—+o

Suites de matrices :
e Une suite de matrices (M,)d’¢léments de M ,(K) converge vers M € M (K)si et

seulement si elle converge vers M coefficient par coefficient.
¢ Toute matrice 4e€ M ,(K) est limite d’une suite de matrices inversibles.

Equivalence des normes : Soient N, et NV, deux normes sur un espace vectoriel £ .

e On dit que N, et N,sont équivalentes si et seulement s’il existe deux constantes
N,(x) < aN, (x)
N, (x) <bN, ()

e Si E est de dimension finie, toutes les normes sur E sont équivalentes. Dans ce cas, la
convergence d’une suite ne dépend pas de la norme choisie.

a,b e R, telles que Vx e E{

Topologie d’un espace vectoriel normé : soit (£, ||) un espace vectoriel normé et 4  E .
o Aestconvexe siet seulement si Vx,y € 4,Vre[0,1],ix+(1-t)yeA.

e Aest fermé si et seulement si pour tout suite (a,)d’éléments de A qui converge vers

acE,onaacA.

x||SM.

e A est ouvert si et seulement si son complémentaire dans F est fermé.
e A4estouvert si et seulement si pour tout a € 4, il existe » > 0tel que B(a,r)c 4.

e Aestbornésietseulementsi M >0,Vxe E,

e ac Eestadhérent a 4 si et seulement si il existe une suite (x,)d’éléments de A telle

quex, — a.L’adhérence de 4, notée A est ’ensemble des points adhérents a A4 .

n— +w

e Soit D c A.0Ondit que Dest dense dans 4 si et seulement si pour tout élément a € 4
, il existe une suite (d,),.,d’éléments de D qui converge vers a.
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Continuité : Soient (F,
ack.Soit ACE.
e festcontinueen a sietseulementsi f(x)— f(a).
Xx—a

||E) et (F’

|| ) deux espaces vectoriels normés f: E'— F . Soit

e Caractérisation séquentielle : f est continue en a si et seulement si pour toute suite
(xn) d’¢éléments de 4 telle que x, > a,on af(xn)n - f(a).

e Soit keR, .fest k-—lipschitzienne sur A4 si et seulement si Vx,ye A,
||f(x) —f(y)||F < k||x —y||E. Elle est alors continue sur 4.

e Si festcontinue sur £:
- Si Gestun ferméde F,alors f7(G)={x€E, f(x) e G} estun ferméde E.
- Si Oestunouvertde F,alors f7'(0)= {x ek, f(x)e O} est un ouvert de E.

|| ») et (F,
f:E— F.On suppose E de dimension finie. Soit 4 c F .

o Théoreme des bornes atteintes : On suppose que A4 est non vide, fermé et borné. Soit
f:A— R une fonction continue. Alors f est bornée et atteint ses bornes (elle admet
donc un minimum et un maximum global sur 4 ).

e Les applications linéaires et bilinéaires sur E sont continues sur E .

e det:M (K)— K est continue sur M, (K).

Continuité en dimension finie : Soient (£, || ) deux espaces vectoriels normés
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Kit de survie : Probabilités

Soit (Q,T,P) un espace probabilisé.

A) Probabilité sur un univers fini ou dénombrable.

Union ou intersection infinie. Soit (Q,7,P) un espace probabilisé. Soit (4,),.une famille
d’événements.

« P(J4,)= 1331@13(04}.

neN

neN k=0
P(4NB)

Conditionnement : Soient 4,8 T, avec P(B)>0 . Alors P,(4)=P(A4/B)= P(B)

Formule de probabilités composées. Soit n>2 et soit4,,..4,des événements tels que
P(ANnA,nNn.nA4,,)#0.Alors VE<n-1LP(4 N4, N.NnA4)#0etona
P4 nA,nN..nA,)=P(A4,)P(4,/ 4)..P(4,/ 4 "4, N..NA4_)

Systéme complet d’événements : Soit (4,) _ une famille d’¢léments de T .

(An)neN est un systéme complet d'événements si et seulement si (An )neN est une partition de
. PR 2 . . _ _
Q: VG, )Heli#j4nA4,=D et Q—UAH.

neN

Quand on remplace Q= U A, par ZP(A” ) =1, on parle de systéme quasi-complet.

neN n=0

Formule des probabilités totales : soit B — Q un événement.
Si A< Q, on adopte la convention P(4) P(B/ A)=0 si P(4)=0.

e Si(4,4,,...,4,)est un systtme complet d’événements, alors :
P(B)=)_P(BNA)=) P(4)P(B/A4)
i=] i=1
e Soit (An )neN un systéme complet ou quasi-complet d’événements. Alors la série

Y P(BnA,)converge et P(B)=Y P(BNA,)=) P(B/A,)P(4,)
n=0 n=0
Evénements indépendants : Soit n>2et 4,,...,4, < Q des événements.
e A4.,.,A, sont indépendants si et seulement si pour tout ke{l,..,n}, pour tous

n

1<i <i, <..<i, <n,ona P(4 N4 N..n4 )=P(4 )P(4)..P(4, )

n 22 n

e Si 4,..,4, sont indépendants et Vk e[l,n],B, e{Ak,A_k}. Alors B, B,,..,B, sont

indépendants.
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B) Variables aléatoires

Loi d’une variable aléatoire X : il s’agit de trouver I’ensemble X (Q) des valeurs prises par

la variable aléatoire, et de déterminer P(X = x) pour chaque x € X (Q)

Couple de variables aléatoires : Soit X,Y deux variables aléatoires discrétes sur Q.
e La loi conjointe du couple de variables aléatoires (X,Y) est la donnée, pour tout

xeX(Q) ettout yeY(Q), des P(X =x)N(Y=y))=P(X=x,Y=)).
e Les lois marginales du couple (X,Y)sont les lois de X et de Y . Elles se déduisent de

la loi du couple (X,Y) : P(X=x)= ) P(X=x,Y=y) pour xe X(Q).

yeY(Q)

Indépendance des variables aléatoires : soit n € N'. Soient X, , X,,..., X,,X,Y des variables
aléatoires discrétes sur Q.
e On dit qu'elles sont indépendantes si et seulement si on a:

Vx, € X, (Q),...,Vx, € X, (QQ),P((X, =x, )Nn..n(X, =x,)) = HP(Xk =x,)
k=1
e Pour prouver que X et Y ne sont pas indépendantes, il suffit de trouver x e X(Q),

yeY(Q)telsque P(X =x)>0et P(Y=y»)>0,mais P(X =x,Y=y)=0.

e Si X,,X,,..,X, sontindépendantes et que pour k €[[1,n], f, estune fonction définie
sur X, (Q).Alors £,(X,), f,(X,),.... f, (X,) sont indépendantes.

e Lemme des coalitions : si X, X,,..., X, sontindépendantes, que 1< p <n,alorssi f

et g sont deux fonctions, f()(l X, ,...,Xp) et g(X Xn) sont indépendantes.

PISERR

Loi d’un maximum ou d’un minimum : lorsque X est le maximum (ou le minimum) d’un
nombre fini de variables aléatoires réelles discrétes X, X,,..., X, indépendantes, mieux vaut

calculer P(X <x) (ou P(X 2 x)) pour xe X (Q).

C) Espérance et variance

Espérance : Soit X une variable aléatoire réelle ou complexe discréte sur €2.

e Alors X est d’espérance finie si et seulement si la famille (x P(X :x))xeX( est

Q)
sommable. Dans ce cas, I’espérance de X est définie par E£(X) = Z xP(X =x).
xeX(Q)
e SiX(Q)c[0,+], on définit toujours E(X)= Y xP(X =x)e[0,+x].

xeX(Q)

e Si X estavaleurs dans NuU {+00} .Alors E(X) = ZP(X >n)= ZP(X >n)
n=1 n=0
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Propriétés de I’espérance : Soient X, ,X,,...,X,,X,Y des variables aléatoires discrétes sur
Q. On suppose Y a valeurs réelles et X, ,X,,...,X,, X avaleursdans K =Rou C.

e On suppose que Y est d’espérance finie et que Vwe Q,|X (a))| <Y(w). Alors X est

d’espérance finie.
e L’espérance est linéaire : si X, X,,...,X, sont d’espérance finie et que a,,q,,..,a, € K,

alors E(Zakaj = ZakE(Xk) .
k=1 k=1

e Si X,,..,X, sont indépendantes et d’espérance finie, alors HX , est également
k=1

d’espérance finie et E(HX,{J =[]EX).
k=1 k=1
Théoréme de transfert : Soit X une variable aléatoire discréte sur Q.et f: X(QQ) > C.
e f(X) est d’espérance finie si et seulement si la famille (f(x)P(X =x)) X(

sommable et alors E(f(X))= Z f(X)P(X =x).

xeX(Q)

Q) est

o SiX(Q)={x,x,..x,} estfini, on a directement E(f(X))= Z f(x)P(X =x,).

J=1

Variance et écart-type : Soit X une variable aléatoire réelle discréte sur Q. On suppose que
X7 est d’espérance finie. Alors X est d’espérance finie et admet une variance ¥ (X).Ona:

o V(X)=E(X-EX))=E(X*)-E(X) 20.
e L’écart-type de X est égal a o(X) =+/V(X).
e SiabelR,ilvientalors V(aX +b)=a’V(X)

e X est centrée si et seulement si E(X)=0. Elle est centrée réduite si et seulement si
V(X)=1.

Covariance : soient XY deux variables aléatoires réelles discrétes. On suppose que X et Y?
sont d’espérance finie.
e Alors XY est d’espérance finie et |[E(XY)|<+/E(X*){E(Y?) (Cauchy-Schwarz).
o cov(X,Y)=EXY)-EX)EY)= E((X—E(X))(Y—E(Y))) est la covariance de X et
Y.
e Si XetY sontindépendantes, alors cov(X,Y)=0

Variance d’une somme : Soit X, ,X,,.., X, des variables aléatoires réelles discrétes sur Q.

On suppose que X, X7,.., X sont d’espérance finie. Alors :

o V(X +X, 4+ X )=V (X)) +V(X,)+.+V(X,)+2 Y cov(X,X,).

I<i<j<n

e Onsuppose que X,,X,,..,X, sontdeux a deux indépendantes.
Alors V(X, + X, +..+ X)) =V(X,)+V(X,)+..+V(X,)
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Inégalité de Markov. SoitY une variable aléatoire réelle discréte sur Q. On suppose Y a
EY)

valeurs positives et d’espérance finie. Alors: Va>0,P(Y 2a) <

Inégalité de Bienaymé-Tchebychev : Soit X une variable aléatoire réelle discréte sur Q. On
V(X)
A

suppose qu’elle admet une variance. Alors VA >0, P(|X -E(X) | > <

Loi faible des grands nombres : Soit X, ,.X,,.., X, des variables aléatoires réelles sur Q. On

suppose que X7, X.,.,X. sont d’espérance finie et que X,,X,,.., X, ont méme loi et sont

indépendantes. On pose m = E(X,) et o> =V(X,).Onnote S, =X, +..+ X, .

Alors pour tout >0, P ( S
n

2
> /?,J < 0-—2 et doncP( S
nA

n

21}—)0

n—>+o0

Fonction génératrice : soit X une variable aléatoire réelle discréte sur Q, a valeurs dans N.
La fonction génératrice de X est définie en tout réel ¢ tel que ¢* est d’espérance finie et donnée

par G, (t)=E (tX ) = ZP(X =n)t" . Cette série entiére a un rayon de convergence R >1.
n=0

e Il yaconvergence normale sur [—1,1] , donc G, est continue sur [—1,1].

e La loi de X est enticrement déterminée par sa fonction génératrice. En particulier,

(k)
‘v’keN,P(sz)z%.
e Xest d’espérance finie si et seulement si G, est dérivable en 1 et dans ce cas
E(X)=G, ().

e Soient X,,JX,,..,X, des variables aléatoires indépendantes. Soit ¢ € R tel que pour tout

ke[1,n],Gy (1) existe. Alors Gy, ,, (1) estdéfiniet G, ., ()=]]G,, ®.
k=1

D) Lois usuelles

Lois usuelles finies : Ici, X (Q) = {x,,x,...x, } est fini.
e X suit une loi uniforme sur [[1 n]] si et seulement si :Vik e [[1 n]] P(X=k)= l
n

e Xsuit une loi de Bernoulli B(p) de parametre p e[O 1] st X(Q)= {O } et
P(X=1)=p. Onaalors P(X =0)=1-p.

e Soit pe [0,1] et neN .Xsuit une loi binomiale B(n, p)si et seulement si
n k n— k
X(Q)z[[O,n]]etquepour OSkSn,P(sz)z[k]p 1-p)

e Si X,,X,,.,X, sont de méme loi de Bernoulli de parametre pe[O,l] et sont

indépendantes, alors S, = X, + X, +...+ X, suit une loi binomiale B(n, p).
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Loi de Poisson. Soit X,Y deux variables aléatoires réelles discrétes sur Q.
X suit une loi de Poisson de paramétre A >0 , notée P(A) si et seulement si X (Q)=N et
ﬂ/ﬂ
n!

VneN,P(X =n)="-e".
Loi géométrique. Soit p e ] 0,1[ . Soit X une variable aléatoire réelle discréte sur Q. On dit
que X suit une loi géométrique de parametre p , notée G(p)si et seulement si X (Q) =Net

VneN ,P(X=n)=(1-p)'p.
C’est la loi du temps d’attente d’un premier succés.
On a en particulier pour neN" : P(X > n)=(1-p)"

Tableau récapitulatif : (avec g=1-p)

Loi | X(Q) P(X=k EX) V(X) G, ()
B(p) | {0,1} p  p(-p) pt+l-p

n k n—k n
B(n, p) | [0,n] (k)p (1-p) np  np(l-p) (pt+1-p)

1 n+l1
U(n I,n —
(n) | [Ln] ; 5
k -4
P(A) | N 4 :' yl ) M
. 1 !
G(p) | N g — £ L
p p 1—-gt
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Kit de survie : Analyse

Les DL a connaitre (lorsque x tend vers 0)

2 n
X
ex=1+x+§+ ..... + — +o(x")

%=1+x+x2+x3+ ...... +x"+o0(x")
—X
2 3 B e
1n(1+x):x—x— + (D—x+0(x”)
2 3 n

a(a-1)x’ a(a—1)...(a—n+1)x"

(1+x)":1+ax+T+ ..... + ' +o0(x") pour a eR.
. n:
2 4 2n
cos(x)=1- 2+ (D) o™
20 4! (2n)!
3 5 2n+l1
sin(x) = x— -+ +(=1)" (x*"?)
31 5 Q2n+1)!

3
tan (x) = x +x? +o(x")

3 2n+l
X n 2n+l
Arctan(x) = x——+...+ (-1 +o(x
(1) = 1=t () o)
2 4 2n
ch(x) =1+ X+ 5 o)
20 417 (2m)!
3 5 2n+1
sh(x)=x+x—+x—+ ..... + +o(x™"?)
31 51 Q2n+1)!

Quelques primitives :
Ici, f désigne une fonction d'une variable réelle et F une primitive de 1 .
u est une fonction d’une variable réelle, dérivable et a valeurs réelles.

a+l1

. sl aeR\{—l},f(x)zx“, F(x)= d
a+l
. si aeR\{—l}, f(x)=u'(x) (u(x))a’ F(x):%
a

u'(x)
(

. si une s’annule pas, f(x)= ) F(x)= ln|u(x)|
u(x

. SiaeC, f(x)ze“",F(x)zle‘”

a

f(x)=In(x), F(x)=xIn(x)—x

1= JI%

. Soit aeR".Si f(x)=

F(x) = Arcsin(x)

— F(x) =L Aretan(®)
X" +a a a
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Quelques formules de trigonométrie :

Pour tous réels x et y, on a :
e sin(2x) =2cos(x)sin(x)
> l+cos(2x)

® cCos x=
2
o sin’xo l—cozs (2x)

e cos(x).cos(y)== (cos(x+ y)+cos(x— y))
e cos(x+ y)=cos(x)cos(y)—sin(x)sin(y)
e sin(x+ y) =sin(x)cos(y)+cos(x)sin(y)

Les DSE a connaitre

Sur C
. Vze(C,eZ:mZ—n
n=0 n!
o sifd<t, =3
1 z n=0
Sur R
” +00 (_1)n—1xn
e Vxe|-L1[,In(1-x) Z— et In(1+x)= Z—
n=t 1 n=1 n
o Vxe]-11[,arctan(x) = Z( D'
‘= 2n+l1
° V(ZERaVXE]—Ll[,(1+x)“:ia(a_l) ..... Ea—l’l+1)xn
n=0 n:

2n

e VxeR,cos(x)= Z( 1)"

pary (2n)!
2n
o VxelR,ch
X ch(x)= ;(2]1)‘
x2n+1
o VxelR,sin(x)= -1
* ) ;( !

2n+1

o VxelR,sh(x)= 2(2 oY

an =§(n+1)x”

e Vxel|-Ll[,—=

(1-
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1) Complexes

Formule du bindme de Newton. Soit a,b deux complexes et n un entier naturel. Alors

(a+b)' = i(:]akb”k

k=0

Angle moitié : pour trouver 1’expression trigonométrique d’une somme (ou d’une différence),
on utilise souvent la méthode de « I’angle moitié ».

L W o DD Y . (a=b) ih
Ainsi, si a,beR, € —e" =e e —e =2isin 5 e .

Racines n-émes : soitn e N".
e
e L’équation z" =1 admet n solutions distinctes dans C. Ce sont les @, =e " avec
0< k< n-1.0n les appelle les racines n-iemes de 1’unité.

o SiZ=re?ecC*, avec re Ri et deR, alors I’équation z" =Z admet #solutions
L0 42z
distinctes dans C. Ce sontles z, =r"e".e " ,avec 0< k<n-1.

Inégalités triangulaires : soit n € N" et soient z,,z,,...,z,,z,z'€ C. Alors :
1) |Z+Z'|S|z|+|z'| et |Z—Z'|£|Z|+|Z'| .
2) |z=z'[=[|z[- =]

n n
Zz,. < Z‘Zf ‘
i=1 i=1

3)

2) Fonctions : continuité et dérivation.

Partie entiére : soit x un réel. Il existe un unique entier relatif p tel que p <x<p+1.p est

appelé partie entiére de x et est noté ij ou E(x).Onaalors x—1< ij <x.

Propriétés : des inégalités utiles.
o Vxe]—1,+oo[,ln(l+x)£x
o VxeR,e">21+x.
o Vxel,

sin x| < |x|

o VabeR,

ab| S%(az +b2).

(Inx) >0 £ 5 4o

X—>+00 xﬁ X—>+0

. . o B
Croissance comparée : On considere «, f>0.Onaalors ¥ .
x? |ln x|a -0 |x|ﬁ e -0

x—0" X—>-0
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Fonctions usuelles :
e Arcsinest continue sur [— 1,1], dérivable sur ]—1,1 [, a valeurs dans {—%,%} Ona

1

1-x

Vx e ] -1,1 [,Arcsin'(x) =

>

. ) L. . T T
e Arctan est impaire, dérivable sur R a valeurs dans} — 5, 5 { .Ona:

Arctan(0) =0 ; Arctan(1) :% et Arctan(x) — T et Vxe R, Arctan'(x) =

x40 D +X

(((((((

Théoréme des valeurs intermédiaires : soit f une fonction continue sur un intervalle 7 de
R . Soit a,b e . Alors si ¢ est compris entre f (a) et f(b), alors il existe ¢ compris entre a et
b tel que f(c)=t.En particulier, lorsque f(a).f(b) <0, f s’annule entre aet b.

Théoréme de la bijection (exemple) : si f est continue, strictement croissante sur Ri, a

valeurs réelles et f(x) —> 1 et f(x) — +o0, alors pour tout ¢ € ] 1,+00 [ , équation f(x)=¢
x—0" X—>+00

. . *
admet une unique solution xdans R, .

Dérivée de la réciproque.
Soit f C* sur I, strictement monotone donc bijective de / sur J = f (/). On suppose aussi
1

Vael, f'(a)#0. Alors f "est C*sur J = f(I) et VbeJ,(fl)'(b):m

Théoréme des bornes atteintes : soient a et b deux réels, avec a<b, et f continue sur le
segment [a,b], & valeurs réelles. Alors f est bornée et admet un minimum m et son maximum
M sur [a,b].

Formule de Leibniz : soit n > 1. Soient f et g deux fonctions C" sur/, alors f g est C" sur/

ons s =570

k=0

Théoréme de Rolle : soit a,b R tels que a <b. On suppose que f est a valeurs réelles,
continue sur [a,b], dérivable sur |a,b[ et que f(a)= f(b). Alors il existe ¢ €]a,b] tel que

f'(e)=0.
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Théoréme des accroissements finis : soit a,b € R tels que a <b. On suppose que f esta
valeurs réelles, continue sur [a,b], dérivable sur ]a,b[. Alors il existe ce]a,b[tel que

IO _
—a

Inégalité des accroissements finis : soit /' une fonction dérivable sur un intervalle /7 de R.
On suppose IM e R, ,Vxel, f'(x)|SM Alors Vx,yel, f(x)—f(y)|SM|x—y|.

Inégalité de Taylor-Lagrange : Soit 7 € N ; soit fune fonction de classe C"*' sur un intervalle
I, a valeurs réelles ou complexes. Soit a,b € . On suppose qu’il existe M, R tel que

n+l

n+l

f('”“(x)\SM Alors f(b)—i% f””(a)SMM

n+l * P (l’l + 1)! n+l*

Vxel,

Théoréme de la limite de la dérivée. Soit / une fonction continue sur un intervalle / de R.
Soit a € 1. On suppose que :
- f est continue sur /

- f estdérivable sur / \{a}.
- f'(x)>leR

X—a

X)— a . . , . .
Alors f= @) — /. En particulier, f est dérivable en aet f'est continue en a.
x —_ a X—a

Fonction convexe : Soit /* une fonction définie sur un intervalle 7 a valeurs réelles. On note
C la courbe représentative de f .
e f estconvexe sur [ siet seulement si
V(x,x,)el’,Vie [0,1], F(A=Dx,+Ax,) S (A=) f(x)+Af(x,)
« L’image de la moyenne est plus petite que la moyenne des images »
e Sifconvexe et dérivable sur 7. Alors Cest au-dessus de ses tangentes :
Va,xel, f(x)> f(a)+(x—a)f'(a) eten dessous de ses cordes (ou sécantes), qui sont

les segments qui relient deux points de la courbe.
o Si f estdeux fois dérivable sur I, f est convexe si et seulement si Vxe I, f"(x) >0

o 1s

e [ est concave sur [ si et seulement si (— f ) est convexe sur /. On a les mémes

résultats avec des inégalités dans I’autre sens.
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Fonctions équivalentes en a : on a trois maniéres de traduire que deux fonctions f et g sont
équivalentes en a (ou que deux suites (U, )et (V,) sont équivalentes en +o0) ;

RACY] —1 (ou Yy - 1)
g(x) x—a I/:1 n— +o0

e [l existe une fonction / définie sur/ telle que 2(x) —> 1 et f = gh au voisinage de a.
(ou il existe (W,) telleque W, — 1 et U, =V, W, pour nassez grand).
n—+w

e f(0) = g@)+o(g(x) (uU, = V,+o(l,))

—>+0

DL d’une primitive. On suppose que a € /et que f admet un DL (a). On suppose aussi que
f admet une primitive F sur /. Alors /" admet un développement limité a l'ordre n+1 en a.

Sif(a+h) = ah* +o(h"), alors Fa+h) = F(a)+ > ~2—h* 1o(h™).
h0 &= h—0 =k+l1

Formule de Taylor-Young : Si f est de classe C"sur 7, et si ae/, alors f admet un

n k
développement limité a 1’ordre » en a donné par f (a+h)hzoz% fPa)+o(h"), avec
=0 K-

zn:—(x_“)k 1P @ +o((x-a)").

h=x—a — 0. Onaaussi f(x)
X—a ak=0 k!

X—>

3) Suites et série de nombres et de fonctions.

Définition de limite : K =Rou C.
e SoitaeK.x, — a sietseulement si vg>0,3NeN,Vn2N,‘xn—a‘S5.

n—>+ow
e Soit(x,) une suite réelle. x, — +ocosietseulementsi V4>0,INeN,Vn=>N,x, > 4.
Théoréme de la limite monotone : soit (x.) une suite réelle.
e On suppose que (x.) est croissante et majorée. Alors la suite (x,) est convergente.
e On suppose que (x») est croissante et ne converge pas. Alors x, — +o .
n—>+w
Suites adjacentes : Deux suites réelles (a,)et (b,) sont adjacentes si et seulement si I’une est
croissante, ’autre décroissante et a, —b, — 0. Elles convergent alors vers la méme limite.
n—+w0
Suites récurrentes linéaires d’ordre 2 : soit (U,) e K" . Soit a,b € K tels que (a,b) # (0,0)
. Soit § = {U ek".VvneN,U,,=alU, +bU, } . Alors on étudie I’équation (C): x> =ax+b.
e Si (@) admet deux solutions distinctes a,fek, alors
S={UeK",34,BeK,YneN,U, = da" + Bp"}
o si ) admet une racine double aek, alors
S={Uek",34,BeK,YneN,U, =(4+Bn)a"}.
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Limites possibles d’une suite récurrente : on considére Uy =ce DcRet f:D— D.On
considere la suite définie par Vne N,U, ,, = f(U,) . On suppose que f est continue en

aeD etque (U.) converge vers a. Alors f(a)=a.

Passage des inégalités a la limite : soit (U.),(V,) deux suites réelles. On suppose que
U, > aetV, — b.Onsupposeaussi AN e N,Vn> N, U, <V, .Alors a<b.

Théoréme d’encadrement pour les équivalents : soient (U,),(V,) (W,)trois suites. On
suppose V, ~ W et IN,Vn= N,V <U <W .Alors U, ~ V,

n
—>+0 n—+0

n—>+o\ @

Formule de Stirling : n! ~ (EJ 27 n

Croissance comparée, si o, >0 et a > 1 :

(Inn)* = o(n”) ; n* = o(e”);n* = o(a");a" = o(n!).
n 0 n o0 n

—+ —> 40 n—>+ —+0

n

Convergence d’une série : soit (U,)e K. Pour neN, on pose S, => U, . La série » U,
k=0

est convergente si et seulement si la suite () est convergente. En cas de convergence,

+00
. ZU , = lim S désigne sa somme (c’est donc un nombre).

k=0 n—+w

n—+0

+00 n +0
e R =2Uk —ZUk = z U, estle reste de la série. Onaalors R, — 0.
k=0 k=0 k=n+1
Lien suite-série : soit (U, )une suite d’¢léments de K. Alors (U,) est convergente si et
seulement si la série Z (U,—-U,_,)est convergente.
n=1
Théoréme spécial des séries alternées (TSSA) : on considére une série alternée ZUn .On

suppose que (|U,

) est décroissante et converge vers 0. Alors ZUn converge. De plus, si on

et VheN,

R |<|U

n+l

400
note alors R, = Z U, ,alors R a méme signe que U

k=n+1

n+l

- . . 1 . .
Séries de Riemann : Soit o e R. Z—a converge si et seulement sia > 1.

nx1
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Sommes géométriques : soit g€ C et n, e N.

n o nmng+l
e Onsuppose g #1 et n>n,. Alors » ¢ =g" llq—
k=n —-q
n—1
e SiabeCetneN,alors a"-b"=(a-b)Y a"'b"*"
k=0
+00 ng, +00 n+l
o Zq" converge si et seulement si |q| <1.Alors Z q" :1q_ et R = z q" :1q .
n=n, _q k=n+1 _q

Définition :ZUn est dite absolument convergente (on dit aussi que (U,) est sommable) si la

n

série Z|Un | est convergente. Si ZU , est absolument convergente, alors ZU , €st convergente.

n n n

Méthode de comparaison série-intégrale : soit fune fonction continue sur [0,+oo],

monotone, positive, Si on peut trouver une primitive de f, on peut utiliser _[ f(¢)dt pour
estimerz f(n).

Produit de Cauchy: soit ZU” et ZV” deux séries absolument convergentes. Soit

W, = Z(;Up V,, - Alors ng converge absolument et on a ng = (Z()Upj(z(;l/qj
p= p= g=

n=0

Résultats de convergence :
e SiVneN,0<U, <V etque ZVH converge, alors ZU” converge.

e Onsuppose U, ~V, et V, designe fixe. Alors Y U, et > V, ont méme nature.

e Onsuppose VneN,U, €C, et VneN,V, eR . On suppose que U, =O(V, ) (c’est
en particulier le cas si U, =o(V,)). Si an converge, alors ZUn est absolument

convergente, donc convergente.

e Régle de d’Alembert : Si VneN,U, >0 et % — aeR, U{+omo}.

n—+ow

Si 0<a<l,alors ZU” converge. Si a >1, alors ZU” diverge grossiérement.

Convergence d’une suite de fonctions : soit (f,),_yune suite de fonctions.

e Elle converge simplement vers f sur [ si et seulement si Vxe/,f,(x) - f(x)(on

fixe x et on regarde la limite de f, (x)lorsque 7 tend vers I’infini).
e clle converge uniformément vers f sur 7 si et seulement si pour nassez grand, la
fonction f, — f estbornée sur Iet ||/, - |, — 0.

n—+o

e La convergence uniforme entraine la convergence simple.
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Continuité de la limite: soit (f,),yune suite de fonctions continues qui converge

uniformément vers f sur /. Alors f estcontinue sur /.

Permutation limite-intégrale : deux possibilités.
e Sur un segmentlz[a,b], avec a<b. Si chaque f, est continue et que (f,),.y

b b
converge uniformément vers f sur 7, alors .f f,@®dt - J f(H)dr.
n—>+0

e Sur un intervalle I quelconque (Théoréme de convergence dominée). On suppose :
- (f,),.y converge simplement sur 7 vers f

fn(t)| < @(t) (domination).
- Les f, et f sont continues par morceaux sur / (accessoire).

Alors les f, et f sont intégrables sur / etJ. f,@dt —> I f(@)dt.
1 1

- il existe ¢ intégrable sur [ telle que Vie l,VneN,

Modes de convergence d’une série de fonctions : soit (U,),_, une suite de fonctions sur 7 a

valeurs dans K . La série de fonctions ZUn :

e converge simplement sur 7 si et seulement si chaque élément xfixé de 7, la série

ZU” (x) est convergente. On peut alors définir S sur / par Vx e /,5(x)= ZUn (%)

n=0
e converge uniformément sur / si et seulement si elle converge simplement sur / et que

— 0.

n—+w0

sionnote R (x)= z U,(x)pour xe/,ona |Rn

k=n+1

,]

e converge normalement sur /si et seulement si pour tout neN, la fonction U, est

bornée sur I, et que la série Z”Un

est convergente.
o0

e La convergence normale sur [ entraine la convergence uniforme qui entraine la
convergence simple sur [ .

e i ||U n||w ne tend pas vers 0, alors la série ZUn ne converge pas uniformément sur 7,

Continuité de la somme d’une série de fonctions : soit (U,),_,une suite de fonctions de 7

dans K. On suppose que :
e Chaque U, est continue sur [ .

+o0
e > U, converge uniformément vers S = U, sur /
n=0

Alors S est continue sur [ .
11 suffit d’avoir la convergence uniforme sur tout segment de / .
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Théoréme de la double limite : soit, pour tout n € N, une fonction U,de / dans K. Soit a

une borne de 7 qui peut étre finie ou infinie. On suppose que :
. ZU , converge uniformément sur / (ou sur J c / contenant un voisinage de a)

e Pourtout neN, U, (x) > W, eK

+o0 +o0
Alors : "W, converge et D U, (x) > D W,
n=0 X_+an=0

Dérivation : soit (U,),_, une suite de fonctions de / dans K . Soit k € N". On suppose que :
e Chaque fonction U, est C*sur I .
e Pourtout i €[[0,k—1], D> U converge simplement sur /.

o ZU ) converge uniformément sur 7 .

Alors §=Y"U, estde classe C*sur [ et VxeI,Vie[Lk],5(x)=> U"(x).
n=0 n=0

11 suffit d’avoir la convergence uniforme sur tout segment de / .

Permutation série-intégrale : soit ZU , une série de fonctions définies sur /.

+00
e Sichaque U est continue et que » U converge uniformément vers S = » U sur un
n n n
n=0

segment / =[a,b], alors ZUUn(t)dtJ converge et i(jUn(t)dtJ = J.(iUn (t)Jdt.

n=0

e Sur un intervalle / quelconque : théoréme d’intégration terme a terme. On suppose :

+00
- ZU , converge simplement vers S = ZUn sur/,
n=0

- Chaque U, est intégrable sur /,
- Lasérie Z I |Un (t) |dt converge (hypothése clé).
1

- S continue par morceaux sur / (accessoire).

Alors S est intégrable sur / ZIU (t)dt converge, et ZUU (t)dt] J.(iUn(t)Jdt
7 \.n=0

n=0
4) Intégration. Intégrales impropres et intégrales 4 parameétres.
On prend K =Rou C. Soit / un intervalle non vide de R, non réduit a un point.

Formule de Taylor avec reste intégral : soient a,b € I, et soit f une fonction de classe C"*'

f(“(a) j(” 0" ey g

sur / avaleursdans K =R ou C. Alors f(b)= Z (b—a)
k=0
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Sommes de Riemann : soit f une fonction continue sur [a,b], avec a,beR et a<b. Alors

R(N="EF @ j 220 5 [ 1w,

n

. . 1 n—1 . 1 1 n . 1
En particulier, =Y f(£) — [f(0dt et => /(L) > [ f()ar
n =0 n no+w 0 n = n n-o+x 0
Théoréme fondamental. soit f une fonction continue sur / a valeurs dans K. Soit a e /.

Alors f admet une primitive sur / et F définie par F(x) = j f(t)dt est la primitive de f qui

s’annule en a. En particulier, F''= f.

Convergence des intégrales et intégrabilité : Soit / continue par morceaux de 7/ dans K.

e fest intégrable sur /si et seulement si j | f (t)|dt converge (I f(#)dt converge
1 1

absolument).
e Si festintégrable sur [, alors _[ f(t)dt converge.
1

e Si festde signe fixe sur 7, alors ( f intégrable sur /)< (_[ f(t)dt converge).
1

Théoréme de changement de variable. L important est de savoir faire en pratique et d’avoir
compris que les deux intégrales ont méme nature et sont égales si une des deux converge.

Intégration par parties. Soient f et g des fonctions de classe C' sur I, un intervalle
d’extrémités a,b € R . On suppose que fg admet des limites finies en a et en b. Alors les

b b

intégrales j f'(@®)g(t)dtet I f(t)g'(t)dt ont méme nature et lorsqu’une des deux converge, on
‘;, o

alégalité [ /' (Dgdr =[f (g ()], - [ f(Dg'()dr

Fonction continue, positive, d’intégrale nulle : soit /:/ > R.
Si f est intégrable, positive et continue sur / et I f(®)dt=0,alors Viel, f(t)=0.
1

Intégrales de référence : soit @ € R. Alors :

1 o . .
e t—>— estintégrable en 0" si et seulement si a <1
t

1 o . .
® t— — estintégrable en + oo siet seulement si a>1
t

e /—> In(¢) est intégrable en 0°
o (—e ™ estintégrable en +oo sietseulementsi a>0.
e On prend ici / =]a,b] ou [ = ] a,b[. Alors f est intégrable en asi et seulement si

h — f(a+ h)est intégrable en 0°. De méme en b .
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b
Outils pour étudier la convergence de I f(@)dt, a,bbornes de I .

e On commence par dire que f est continue (par morceaux) sur / .
e On ¢étudie ce qui se passe aux bornes de I’intervalle qui ne sont pas contenues dans 7 .
e Si f(x) ~ g(x), gestintégrable en b si et seulement si f est intégrable en b .
x—b
o Sif(x) ‘=b0( g(x))ou f(x) ‘:bo( g(x)) et gestintégrable en b, alors f est intégrable

enb.
o SiVvtel 0< |f(t)| < g(t) et gestintégrable sur 7, alors f estintégrable sur /.

Continuité des intégrales a paramétres : On suppose que :
1) Pourtout te€/l, x —> g(x,t)est continue sur 4 .

2) 1l existe une fonction ¢ intégrable sur [telle que Vxe 4,Viel,

g0 < (1)
(domination, hypothése clé).
3) Pourtout x e 4, t —> g(x,t)est continue par morceaux sur / (accessoire).

Alors la fonction f :x> j g(x,t)dt est définie et continue sur 7 .
J

11 suffit d’avoir la domination pour tout x € [a,b] ,avec a < b éléments quelconques dans 4 .

Dérivation des intégrales a paramétres : Soit n € N". On suppose que :
1) Pourtout rel, x> g(x,t)est C" sur 4.
o :
2) Pourtout k € [[O,n - 1]] ,pourtoutxe 4, t a—‘f(x, t) est intégrable sur 7 .
X

n

3) Il existe une fonction ¢ intégrable sur I telle que Viel,Vxe 4, g—‘f(x, t)
X

<@ (1l

suffit d’avoir cette domination sur tout segment[a,b] cA).

n

g . )
(x,¢) est continue par morceaux sur J (accessoire)

n

4) Pourtoutxe A4, t—=

k
Alors f :x—)Ig(x,t)dt est définie et C" sur I et Vk e[[Ln], f“(x) = jZ—‘f(x,t)dt
x
J J

Théoréme de convergence dominée a paramétre continu : soient A4,/ deux intervalles de R

o en e e . AxI—>K
et a une extrémité, finie ou infinie, de 4. Soit g : . On suppose que :

(x,1) = g(x,1)
o Viel, g(x,t)—>I(t)

e [l existe une fonction ¢ intégrable sur [ telle que V(x,f)e AxI,

gx,n|<p() (si
I =R’ et a=+o, il suffit d’avoir cette domination pour x € [c,+oo[ ,avec ¢>0)
e Pourtout xe 4,t+> g(x,t) ett — [(¢) sont continues par morceaux sur / (accessoire)
Alors /est intégrable sur 7 et j g(x,t)dt Z,Il(’) dt .
1 1
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5) Séries entiéres et équations différentielles

Rayon de convergence d’une série entiére : Soit(a,) e C". Soit Zanz" une série enticre.
neN

Le rayon de convergence R de Zanz" est R =sup {r eR, ,(a,r")est bomée} eR, U{+x}.
neN

. n
e Si |z| <R, Zanz converge absolument.
neN

o Si |Z| > R, alors (a,z") n’est pas bornée et Zanz” est grossierement divergente.
neN

o Si |Z| = R, tout est possible.

uti u uyv % une série enticre » a,z". Soit r > 0.
Outils pour trouver le rayon de convergence R d’ t Lz . Soit ¥ >0
neN

an+l

aﬂ

— beR, alors

n—+0

e Utiliser la régle de d’Alembert si tous les a, sont non nuls : si

R:%si beR’ ,et R=+w si b=0.

e Si (anr”)est bornée, alors R > r et si (anr” )ne tend pas vers 0, alors R<r

, alors R(Z anz”j = R(anz”j.

neN neN

e Si

aﬂ

b}'l

Produit de Cauchy de deux séries entiéres.

Soient Zanz" et anz” deux séries enticres de rayons respectifs R et R, .
neN neN

n
On note R le rayon de convergence de la série enticre z c,z",avec VneN,c, = Za .
neN p=0

Alors R>min(R ,R,). De plus, si |z| <min(R,,R,), alors icnz” = [i apz”}(iqu"j
n=0 p=0 q=0

Rayon de convergence et dérivation :

e Les séries enticres Zanz” et Zn a,z" ont méme rayon de convergence.
neN neN

e Lerayon de convergence est inchangé par dérivation ou intégration terme a terme

Propriétés : SoitZant" , série entiere de la variable réelle. On suppose R = R(Z ant”j >0

neN neN

+0
a .
o Alors F:t— zﬂt” est une primitive de f sur ]—R,R [ De plus,Zant” converge
n=1 N neN

normalement sur tout segment de ] -R,R [ (en particulier, on peut intégrer terme a terme

sur tout segment [c,d] C ] —-R R [ ).
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+0o0
e Pour te]—R,R [ ,on pose f(t)= Zant” . Alors f est de classe C” sur ]—R,R[. On
n=0
obtient les dérivées successives de f en dérivant terme a terme.

_ /"0

e Il y a unicité du développement en séries entiéres : on a VneN,a, = ' et si
n!

Vxel|-rr [,ianx” = +Z:bnx” ,alors VneN,a, =b,.
n=0 n=0
Equations différentielles du premier ordre: (£):y'=a(x)y+b(x) et (H):y'=a(x)y. Soit
A une primitive de a.
e L'ensemble des solutions de (H)est donné par S(H) = {(x = Lexp(A(x))), 1 € K}
e Les solutions de 1'équation (£) s'obtiennent en ajoutant n'importe quelle solution
particuliére de (£) aux solutions de 1'équation homogéne (H).
e Pour trouver une solution particuliere de (£, on peut utiliser la méthode de variation
de la constante : si S(H)= {(x —> Ah(x)),AeK } , on cherche une solution de (E£)de
la forme f(x)=A(x)h(x), avec A dérivable sur I .
e Probléme de Cauchy : Soit x, € . Pour tout « € K, il existe une unique solution de

(E) satisfaisant la condition initiale 4(x,) =« .

Equation homogéne du second ordre a coefficients constants. On suppose a,h R et
Onnote (H):y"+ay'+by=0 et (C):x’+ax+b=0
e Si (C) admet deux solutions réelles distinctes g et s, alors les solutions a valeurs
réelles de ’équation (H)sontles t — Ae? + Be*', avec A,BeR.
e Si (C) admet une unique solution réelle 7, alors les solutions a valeurs réelles de
I’équation (H)sont les ¢t —(At+B)e" , avec 4,BeR.
e Si (C) admet deux solutions complexes conjuguées « +im,a —iw (avec @ >0), alors

les solutions de (H) sont les ¢ —e”'(Acoswrt + Bsinat) , avec 4,BeR.

Equations avec second membre : soient a,b,c trois fonctions continues sur un intervalle
de R, a valeurs dans R ou C. On s’intéresse a I’équation (E): y"+a(t)y'+b(t)y =c(¢).
(H):y"+a(t)y'+b(t)y =0 est I’équation homogene associce.
e Probléme de Cauchy : Soit ¢, € [ . Soit y deux fois dérivable sur /. Soient y,,v, € K .
y solution de (E)
Le probléme de Cauchy (P): ¥(t,)=y,  admet une unique solution.
Y'(t)=v,
e Les solutions de 1'équation (£) s'obtiennent en ajoutant n'importe quelle solution
particuliére de (E) aux solutions de 1'équation homogeéne (H).
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Dans la suite, on considére U un ouvert de R” et f:U — R, une application.

Vecteur gradient, matrice Hessienne, développement limité : soit a =(q,,..,a,)eU . On

suppose que fest de classe C* sur U .

e Legradientde f en a estle vecteur Vf(a)= ﬂ(a),...,%(a) .
ox, ox,

e La matrice Hessienne de [ en a, notée H, (a)est définie par

i,j )

i J

2
Vi, je [[l,p]],(H/(a)) i 6fx (a) .Avec le théoréme de Schwarz, H ,(a) € S, (R).

e f admet un développement limité a I’ordre 2 au voisinage en a =(q,..,a,) €U . Pour

h:(hl,hz,...,hp)eR" telque a+h € U,ona:

fla+h) = f(a)+<Vf(a),h>+%hTH (@h+ o).

Régle de la chaine : soit / un intervalle de R. Soit f/:U — R, de classe C' sur U et soient

X,,...,X, des fonctions dérivables sur I telles que V¢ e I,(xl(t),...,xp(t)) eU.Soitg: I >R,
avec pour tel, g(t)= f(x1 (t),...,xp(t)). Alors g est dérivable sur 7, et on a

Viel, g\(t)= ig(xl (t),...,xp(t))x_,- "(t).

j=1 OX

Extrema locaux et points critiques : on suppose que /* est de classe C”sur Pouvert U . Soit
aeU.
e ¢ est un point critique si et seulement si Vf(a)=0.
e Si f admet un extremum local en a, alors a est un point critique.
e Si g estun point critique, alors :
- Lorsque H,(a)posséde une valeur propre strictement négative et une autre

strictement positive, il n’y a pas d’extremum local en a.

- Si toutes les valeurs propres de H (a)sont strictement positives, il y a un
minimum local strict en a.

- Si toutes les valeurs propres de H (a)sont strictement négatives, il y a un
maximum local stricten a.

- Lorsque Sp(Hf(a)) cR, (ouque Sp(Hf(a)) c R_),etque 0 est valeur propre

de H,(a), on ne peut pas conclure.
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