Programme de colle n°6 (04/11 au 08/11)

Cours

Diffusion de particules

Exemples, notions de diffusion et de convection. Flux particulaire, vecteur densité de courant (de flux) de particules $\overrightarrow{j_N}$. Bilan de particules : à 1D en cartésiennes sans ou avec terme de production (démo à savoir), cas général à 3D (admis conformément au programme; par contre, les élèves doivent savoir l'écrire sous forme intégrale via OSTROGRADSKI et interpréter les termes). Loi de FICK.

Équation de diffusion : à 1D en cartésiennes (démo exigible), à 3D (le passage au laplacien scalaire via la loi de FICK est à connaitre), propriétés (irréversibilité, longueur et temps caractéristiques, linéarité, conditions initiale et aux limites). Cas du régime stationnaire sans et avec sources. Exemple en symétrie sphérique : résolution avec le laplacien fourni et bilan global.

Approche microscopique de la diffusion. Marche au hasard 1D.

Diffusion thermique

Les 3 types de transfert thermique. Flux de chaleur, vecteur densité de courant de chaleur (de courant thermique). Bilan d'énergie : à 1D en cartésiennes sans et avec terme de production (démo à savoir), équilibre thermo local, cas général à 3D (admis conformément au programme; par contre, les élèves doivent savoir l'écrire sous forme intégrale via Ostrogradski et interpréter les termes). Loi de FOURIER.

Équation de diffusion : à 1D en cartésiennes (démo exigible), à 3D (le passage au laplacien scalaire via la loi de FOURIER est à connaître), propriétés (irréversibilité, longueur et temps caractéristiques, linéarité, conditions initiale et aux limites). Exemples de conditions aux limites classiques (solide-solide et solide-fluide, dont loi de NEWTON).

Régime stationnaire. Sans source : $\overrightarrow{j_Q}$ est à flux conservatif, exemple en symétrie sphérique : résolution avec le laplacien fourni et bilan global. Notion de résistance thermique (analogie avec l'électricité). Approximation des régimes quasistationnaires. Cas avec sources : "la puissance produite dans le volume est évacuée par sa surface externe", exemple en symétrie cylindrique. Bilan d'entropie.

Approche descriptive du rayonnement thermique

Savoir utiliser les expressions fournies des lois de WIEN et STEFAN pour expliquer qualitativement l'effet de serre.

Ordres de grandeur

- Diffusion de particules Diffusivités particulaires : $D_{\rm gaz}\approx 10^{-5}~{\rm m^2\cdot s^{-1}}$, $D_{\rm liq}\approx 10^{-10}~{\rm m^2\cdot s^{-1}}$ et $D_{\rm sol}<10^{-15}~{\rm m^2\cdot s^{-1}}$.
- **Diffusion thermique** Conductivités thermiques : métal $\lambda \approx 10^2 \, \mathrm{W \cdot m^{-1} \cdot K^{-1}}$, brique-béton-eau-etc $\lambda \approx 1 \, \mathrm{W \cdot m^{-1} \cdot K^{-1}}$, air $\lambda \approx 10^{-2} \, \mathrm{W \cdot m^{-1} \cdot K^{-1}}$. Diffusivité thermique $D_{\mathrm{th}} = \frac{\lambda}{\mu c} \approx 10^{-6} 10^{-4} \, \mathrm{m^2 \cdot s^{-1}}$.