I.A.1. Soit y un vecteur non nul de V. Comme x et y sont deux vecteurs non nuls, il est possible de choisir dans des vecteurs e_2, \ldots, e_n d'une part et f_2, \ldots, f_n d'autre part de sorte que (x, e_2, \ldots, e_n) et (y, f_2, \ldots, f_n) soient deux bases de V.

On définit alors un automorphisme ϕ de V en posant $\phi(x) = y$ et $\phi(e_k) = f_k$ pour tout $k \in [2, ..., n]$ (il envoie une base de V sur une base). La matrice A qui représente ϕ dans la base canonique de V vérifie alors Ax = y.

Soit W un sous-espace vectoriel de V stable par \mathscr{L} , non trivial. Il existe dans W au moins un vecteur x non nul. Comme W est stable par \mathscr{L} , tous les vecteurs de la forme Ax avec A inversible sont dans \mathscr{L} également. On a vu que tout vecteur non nul de V s'obtient de cette façon, si bien que W est V tout entier.

On a bien montré que $\mathcal{L} = \mathrm{GL}_n(\mathbb{C})$ vérifie la propriété P_6 .

I.A.2. Les éléments de \mathscr{L} sont tous inversibles, donc sont tous de rang n, donc aucun n'est de rang 1 car $n \ge 2$. La matrice I est inversible donc elle appartient à \mathscr{L} , et elle est de rang n. Par conséquent, les propriétés P_2 et P_3 sont vérifiées par \mathscr{L} mais pas P_1 .

La propriété P_4 n'est pas vérifiée car la matrice nulle n'est pas dans $\mathscr{L}.$

La propriété P_5 est vérifiée : c'est une propriété du cours.

- **I.B.1.** On a $Te_n = t_{n,n}e_n$, ce qui montre que la droite $\mathbb{C}e_n$ est stable par \mathscr{L} . La propriété P_6 n'est donc pas vérifiée.
- **I.B.2.** La matrice $E_{2,1}$ est triangulaire inférieure et de rang 1, donc $\mathcal L$ vérifie P_1 .

La matrice identité est triangulaire inférieure et de rang n, donc \mathscr{L} vérifie P_2 et P_3 .

Soient T et T' deux éléments de \mathscr{L} . Soit $\lambda \in \mathbb{C}$. Pour tout couple (k,m) d'indices tel que m > k, le coefficient d'indice (k,m) de T + λ T' vaut $t_{k,m} + \lambda t'_{k,m} = 0$, si bien que T + λ T' est dans \mathscr{L} .

Comme de plus la matrice nulle est triangulaire inférieure, l'ensemble \mathscr{L} est un sous-espace vectoriel de E, et la propriété P_4 est vérifiée.

Il reste à remarquer que \mathscr{L} est stable par multiplication, mais suffit-il de l'affirmer comme une propriété du cours? Dans une épreuve écrite de ce genre, il se peut qu'une démonstration soit attendue (et il n'y a aucun moyen de le deviner).

Soient A et B deux matrices triangulaires inférieures. On pose C = AB. Soit (k, m) un couple d'indices tel que m > k.

On a : $c_{k,m} = \sum_{j=1}^{n} a_{k,j} b_{j,m} = 0$ car tous les termes de cette somme sont nuls. En effet, pour avoir $a_{k,j} b_{j,m} \neq 0$, il faudrait avoir $k \geqslant j$ et $j \geqslant m$ donc $k \geqslant m$, ce qui n'a pas lieu.

La propriété P_5 est donc vérifiée.

I.C.1. Comme A et I sont dans \mathscr{L} , qui est un sous-espace vectoriel de E, la matrice $A - \lambda I$ est dans \mathscr{L} . La propriété P_1 n'est pas vérifiée, donccette matrice est de rang 0 ou 2.

Écrivons $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. On a $\det(A - \lambda I) = \lambda^2 - (a+d)\lambda + (ad-bc)$, ce qui s'annule forcément pour au moins une valeur de λ .

Pour une telle valeur de λ , la matrice $A - \lambda I$ n'est pas de rang 2, donc elle est de rang 0, si bien qu'elle est nulle. La matrice A est donc une matrice d'homothétie vectorielle.

Réciproquement, toutes les matrices colinéaires à I sont dans $\mathscr L$ car I y est et $\mathscr L$ est un espace vectoriel.

On a montré que ${\mathscr L}$ est exactement ${\mathbb C} {\rm I}.$

I.C.2. L'ensemble $\mathbb{C}I$ ne vérifie pas P_6 car il laisse stable la droite vectorielle $\mathbb{C}e_1$ de V (toutes les droites vectorielles, en fait).

L'ensemble \mathscr{L} considéré ici n'est donc pas $\mathbb{C}I$, si bien qu'il vérifie P_1 d'après la contraposée de l'implication démontrée à la question précédente.

II.A. On pose $V' = \{Nz_1 \mid N \in \mathcal{L}\}.$

Soit $x \in V'$. Il existe $N \in \mathcal{L}$ tel que $x = Nz_1$.

Soit $M \in \mathcal{L}$. On obtient $Mx = (MN)z_1$. D'après P_5 , la matrice MN est dans \mathcal{L} donc Mx est dans V'. On a alors prouvé que V' est stable par M.

C'est vrai pour toute matrice M de \mathcal{L} donc V' est stable par \mathcal{L} .

D'après P_6 , on en déduit que V' est égal à $\{0_V\}$ ou à V. Mais comme \mathscr{L} contient I d'après P_3 , l'ensemble V' contient au moins l'élément z_1 , qui n'est pas nul. Donc V' est égal à V.

Soit $(\lambda, \mu) \in \mathbb{C}^2$ tel que $\lambda M_0 + \mu M_1 = 0_E$.

On a alors $(\lambda M_0 + \mu M_1)x_1 = 0_V$ c'est-à-dire $\lambda z_1 + \mu z_2 = 0$. La famille (z_1, z_2) est libre donc les coefficients λ et μ sont nuls.

La famille (M_0, M_1) est donc libre.

II.B. On a $(f_0 \circ g_0)(\operatorname{Im}(f_0)) = \operatorname{Im}(f_0 \circ g_0 \circ f_0) \subset \operatorname{Im}(f_0)$, ce qui montre que $\operatorname{Im}(f_0)$ est stable par $f_0 \circ g_0$.

On a $\operatorname{Im}(f_1 - \alpha f_0) = (f_0 \circ g_0 \circ f_0 - \alpha f_0)(\mathbb{C}^n) = (f_0 \circ g_0 - \alpha \operatorname{Id})(\operatorname{Im}(f_0)) = \operatorname{Im}(\varphi_0 - \alpha \operatorname{Id}_{\operatorname{Im}(f_0)}), \text{ donc } \operatorname{rg}(f_1 - \alpha f_0) = \operatorname{rg}(\varphi_0 - \alpha \operatorname{Id}_{\operatorname{Im}(f_0)}).$

La formule du rang donne alors $\operatorname{rg}(f_1 - \alpha f_0) = \dim(\operatorname{Im}(f_0)) - \dim(\operatorname{Ker}(\varphi_0 - \alpha \operatorname{Id}_{\operatorname{Im}(f_0)})) < \operatorname{rg}(f_0)$ car le noyau de $\varphi_0 - \alpha \operatorname{Id}_{\operatorname{Im}(f_0)}$ est non trivial (il contient le vecteur $z \neq 0$).

On en déduit l'inégalité $rg(M_1 - \alpha M_0) < rg(M_0)$.

La famille (M_0, M_1) étant libre, la matrice $M_1 - \alpha M_0$ n'est pas nulle. Son rang vaut donc au moins 1.

Comme la matrice $M_1 - \alpha M_0$ est dans \mathcal{L} , l'hypothèse selon laquelle M_0 a un rang minimal parmi les matrices non nulles de \mathcal{L} est contredite.

On a alors montré par l'absurde que m vaut 1.

III.A. Posons $\mathcal{W} = \{M \in E \mid M(W) \subset W\}.$

Soient M_1 et M_2 dans \mathcal{W} . Soit $\lambda \in \mathbb{C}$.

Soit $w \in W$. On a $(M_1 + \lambda M_2)(w) = M_1(w) + \lambda M_2(w) \in W$, donc $M_1 + \lambda M_2 \in \mathcal{W}$.

N'oublions de vérifier que 0_E est dans \mathcal{W} , mais ça découle de l'égalité $0_E(W) = \{0_V\}$.

On a alors bien vérifié que W est un sous-espace vectoriel de E. Il contient $\mathscr L$ car W est stable par $\mathscr L$ par hypothèse.

Soit (v_1, \ldots, v_k) une base de W. Par le théorème de la base incomplète, on peut la compléter en une base $\mathcal{V} = (v_1, \ldots, v_n)$ de V.

Une matrice M est dans \mathcal{W} si et seulement si les vecteurs Mv_1, \ldots, Mv_k sont tous dans W.

Rappelons que l'application $\Phi: \mathcal{M} \mapsto (\mathcal{M}v_1, \dots, \mathcal{M}v_n)$ est un isomorphisme de E sur \mathcal{V}^n .

L'image de \mathcal{W} par Φ est $\mathbf{W}^k \times \mathbf{V}^{n-k}$, si bien que \mathcal{W} est de dimension $k \times \dim(\mathbf{W}) + n \times \dim(\mathbf{V}) = k^2 + n(n-k) = k^2 + n^2 - nk = n^2 - k(n-k)$.

On a maintenant les inégalités $n^2 - 1 \le \dim(\mathcal{L}) \le \dim(\mathcal{W})$ donc $k(n-k) \le 1$, ce qui n'est possible que si k = 0 ou k = n ou (k = 1 et n - k = 1).

Le dernier cas est impossible car n ne vaut pas 2. Il reste donc pour seules possibilités k=0, c'est-à-dire $W=\{0_V\}$, et k=n, c'est-à-dire W=V.

III.B.1. L'espace $\mathcal{H} \cap \mathcal{L}$ ne peut pas être trivial, car sinon, la somme $\mathcal{H} + \mathcal{L}$ aurait une dimension égale à $\dim(\mathcal{H}) + \dim(\mathcal{L})$, ce qui est strictement supérieur à $n^2 = \dim(E)$, ce qui est impossible.

Ainsi, il y a dans \mathscr{L} au moins un élément non trivial de la forme $M = \lambda I + \mu E_{k,m}$. Comme $E_{k,m}$ n'est pas dans \mathscr{L} , le coefficient λ n'est pas nul, si bien que M est une matrice triangulaire à coefficients diagonaux tous non nuls, qui est donc inversible.

III.B.2. Posons $M = E_{n,1} + \sum_{k=1}^{n-1} E_{k,k+1}$. Cette matrice est dans \mathscr{L} et est inversible (ses colonnes forment une base de V, puisqu'il s'agit des vecteurs de la base canonique de V, dans l'ordre $(e_n, e_1, \dots, e_{n-1})$).

On a alors montré qu'il y a dans tous les cas au moins une matrice inversible dans \mathscr{L} .

III.C. La famille $(A, A^2, ..., A^{n^2+1})$ est une famille de n^2+1 vecteurs dans un espace vectoriel de dimension n^2 donc elle est liée.

Il existe donc $\mu_1, \ldots, \mu_{n^2+1}$ non tous nuls dans $\mathbb C$ tels que $\sum_{k=1}^{n^2+1} \mu_k \mathbf A^k = 0$.

Il existe au moins deux indices k pour lesquels μ_k est non nul (dans le cas contraire, on aurait $A^k = 0$, ce qui contredirait l'inversibilité de A).

Notons a le plus petit des indices k tels que $\mu_k \neq 0$ et notons b le plus grand d'entre eux. On obtient

$$\sum_{k=a}^{b} \mu_k \mathbf{A}^k = 0_{\mathbf{E}}.$$

Multiplions par $(A^{-1})^a$. Il reste

$$\underbrace{\mu_a}_{\neq 0} \mathbf{I} + \mu_{a+1} \mathbf{A} + \dots + \underbrace{\mu_b}_{\neq 0} \mathbf{A}^{b-a} = 0_{\mathbf{E}}.$$

On peut isoler I, pour obtenir

$$I = -\frac{1}{\mu_a} \left(\mu_{a+1} A + \dots + \mu_b A^{b-a} \right).$$

Pour tout $k \in \mathbb{N}^*$, la matrice A^k est dans \mathcal{L} d'après P_5 . Comme \mathcal{L} est un sous-espace vectoriel de E, on en déduit que I est dans \mathcal{L} aussi.

III.D. Il est bien sûr attendu que l'on vérifie que A_u et C_u sont des sous-espaces vectoriels de V, ainsi d'ailleurs que B_u . Au pire, la simple mention de ces faits est appréciée.

Le fait que A_u soit stable par $\mathcal L$ se démontre comme pour l'espace V' de la question II.1.

Ainsi, A_u est un sous-espace vectoriel de V stable par \mathscr{L} . Comme \mathscr{L} contient I, l'espace A_u contient u, si bien qu'il n'est pas trivial. C'est donc V tout entier d'après P_6 .

Soit $w \in C_u$. Soit $M \in \mathcal{L}$. Soit $x \in B_u$. Il existe $L \in \mathcal{L}$ telle que $x = \overline{L}u$.

On a alors ${}^t\!\overline{x}\mathrm{M}w={}^t\!\overline{u}\mathrm{L}\mathrm{M}w={}^t\!\overline{z}w$ en posant $z={}^t\!\overline{\mathrm{L}\mathrm{M}}u.$ La matrice LM appartient à $\mathscr L$ d'après P_5 dont z est dans $\mathrm{B}_u.$

On en déduit l'égalité ${}^t\overline{x}Mw=0$. C'est vrai pour tout vecteur x de B_u donc $Mw\in C_u$.

C'est vrai pour tout vecteur w de C_u donc C_u est un sous-espace vectoriel de V stable par M.

C'est vrai pour toute matrice M de \mathcal{L} donc C_u est stable par \mathscr{L} . Il vaut donc $\{0_V\}$ ou V d'après P_6 .

Supposons que C_u soit égal à V.

L'égalité $\bar{1}u = u$ montre que u est dans B_u . On obtient alors $\bar{u}u = 0$, c'est-à-dire

$$\sum_{k=1}^{n} |u_k|^2 = 0.$$

C'est une somme de termes positifs donc tous les u_k sont nuls. On en déduit que u est le vecteur nul, mais cela contredit les hypothèses de l'énoncé sur u.

Cette contradiction montre que \mathbf{C}_u est réduit au vecteur nul.

L'application $\psi: w \mapsto (\overline{b_1}w, \dots, \overline{b_r}w)$ est une application linéaire de V vers \mathbb{C}^r .

Soit $w \in \text{Ker}(\psi)$. Soit $v \in B_u$. Considérons sa décomposition dans la base (b_1, \ldots, b_r)

$$v = \sum_{k=1}^{r} v_k \, b_k.$$

On obtient alors

$${}^{t}\overline{v}w = \sum_{k=1}^{r} \overline{v_k} {}^{t}\overline{b_k}w = 0.$$

C'est vrai pour tout $v \in B_u$ donc w est dans C_u donc w est nul.

L'application ψ est donc injective, donc $\dim(B_u) \geqslant \dim(V)$. En combinant cela avec l'inclusion $B_u \subset V$, on conclut que B_u est V tout entier.

Soit maintenant une matrice A de rang 1 dans E. Elle s'écrit sous la forme x^ty pour un certain couple (x, y) d'éléments non nuls de V (comme expliqué plus haut pour M_0).

Comme x est dans A_{v_0} et y est dans B_{v_0} , il existe L et M dans $\mathscr L$ vérifiant telles que $Lv_0 = x$ et $\overline{M}w_0 = y$. On en déduit que $A = Lv_0 \, \overline{w_0} M = LM_0 M \in \mathscr L$.

Ainsi, toutes les matrices de E de rang 1 appartiennent à \mathscr{L} . C'est le cas en particulier des matrices de la base canonique de E, si bien que \mathscr{L} est E tout entier.