Exercice 1. (Exercice 3 de la fiche musclée de 2016). On définit une application linéaire ϕ de $\mathbb{R}_n[X]$ vers \mathbb{R}^{n+1} en posant

$$\phi(P) = (P(1), \dots, P(n+1)).$$

Montrer l'égalité
$$\phi(\mathbb{R}_{n-1}[X]) = \left\{ v \in \mathbb{R}^{n+1} ; \sum_{i=1}^{n} (-1)^{n-i} {n \choose i-1} v_i = v_{n+1} \right\}.$$

Solution de l'exercice 1. Soit $P \in Ker(\phi)$. C'est un polynôme de degré au plus n qui admet au moins +1 racines donc c'est le polynôme nul.

L'application ϕ est donc injective. L'espace $\phi(\mathbb{R}_{n-1}[X])$ est donc un sous-espace vectoriel de dimension n de \mathbb{R}^{n+1} .

Notons

$$F = \left\{ v \in \mathbb{R}^{n+1} \; ; \; \sum_{i=1}^{n} (-1)^{n-i} \binom{n}{i-1} v_i = v_{n+1} \right\}.$$

Ce sous-espace vectoriel de \mathbb{R}^{n+1} est le noyau de l'application linéaire

$$f: v \mapsto v_{n+1} - \sum_{i=1}^{n} (-1)^{n-i} \binom{n}{i-1} v_i$$

de \mathbb{R}^{n+1} dans \mathbb{R} . Cette application n'est pas l'application nulle d'après l'égalité

$$f(e_{n+1}) = 1$$

donc elle est de rang 1. Par le théorème du rang, son noyau est de dimension n.

Ainsi, les espaces vectoriels $\phi(\mathbb{R}_{n-1}[X])$ et F ont la même dimension. Pour prouver qu'ils sont égaux, il suffit d'obtenir une inclusion entre eux. On va justifier que $\phi(\mathbb{R}_{n-1}[X])$ est inclus dans F. Autrement dit, on va montrer que pour tout $P \in \mathbb{R}_{n-1}[X]$, on a l'égalité $f(\phi(P)) = 0$.

Soit $P \in \mathbb{R}_{n-1}[X]$. La formule à démontrer s'écrit

$$P(n+1) - \sum_{i=1}^{n} (-1)^{n-i} \binom{n}{i-1} P(i) = 0.$$

En insérant P(n+1) dans la somme, elle se réécrit

$$\sum_{i=1}^{n+1} (-1)^{n+1-i} \binom{n}{i-1} P(i) = 0.$$

Avec le décalage j = i - 1, ça se réécrit

$$\sum_{j=0}^{n} \binom{n}{j} (-1)^{n-j} \mathbf{P}(j+1) = 0.$$

Notons σ l'endomorphisme $Q(X) \mapsto Q(X+1)$ de $\mathbb{R}[X]$. On obtient alors

$$\sum_{j=0}^{n} \binom{n}{j} (-1)^{n-j} P(j+1) = \left(\sum_{j=0}^{n} \binom{n}{j} (-1)^{n-j} \sigma^{j}(P) \right) (1).$$

Les endomorphismes σ et Id commutent donc

$$\sum_{j=0}^{n} \binom{n}{j} (-1)^{n-j} \sigma^j = (\sigma - \mathrm{Id})^n.$$

On remarque que $(\sigma - \mathrm{Id})(1) = 0$ et pour tout $k \in \mathbb{N}^*$,

$$(\sigma - \mathrm{Id})(X^k) = (X+1)^k - X^k = \sum_{i=0}^{k-1} \binom{k}{i} X^i,$$

ce qui est un polynôme de degré k-1. En combinant ces égalités, on voit que si Q est un polynôme de degré $d \ge 1$, alors $(\sigma - \operatorname{Id})(Q)$ est un polynôme de degré d-1.

En itérant ce principe, on obtient que $(\sigma - \mathrm{Id})^d(Q)$ est constant et que $(\sigma - \mathrm{Id})^{d+1}(Q)$ est nul.

En particulier, l'inégalité $\deg(P) \leq n-1$ donne que le polynôme $(\sigma-\mathrm{Id})(P)$ est nul donc

$$\sum_{j=0}^{n} \binom{n}{j} (-1)^{n-j} \sigma^{j}(\mathbf{P}) = 0 \quad \text{puis} \quad \sum_{j=0}^{n} \binom{n}{j} (-1)^{n-j} \mathbf{P}(j+1) = 0$$

donc $\phi(P) \in \text{Ker}(f)$.

C'est vrai pour tout $P \in \mathbb{R}_{n-1}[X]$ donc $\phi(\mathbb{R}_{n-1}[X]) \subset F$. L'égalité des dimensions permet de conclure que ces deux espaces sont égaux.

Exercice 2. (Exercice 7 de la fiche musclée de 2016.) Soit E un espace vectoriel de dimension n. Soit u un endomorphisme de E. On suppose qu'il existe une famille (x_1, \ldots, x_{n+1}) de (n+1) vecteurs propres de u dont toute sous-famille de n vecteurs soit libre.

Montrer que u est une homothétie.

Solution de l'exercice 2. Pour tout $k \in [1, n+1]$, notons λ_k la valeur propre de u associée au vecteur propre x_k .

La famille (x_1, \ldots, x_n) est une famille libre de n vecteurs de E donc c'est une base de E. La matrice de u dans cette base est la matrice diagonale de diagonale $(\lambda_1, \ldots, \lambda_n)$.

On en déduit que le polynôme caractéristique de u est

$$\chi_u = (X - \lambda_1)(X - \lambda_2) \cdots (X - \lambda_n).$$

En faisant le même raisonnement avec la famille (x_2, \ldots, x_{n+1}) , on obtient

$$\chi_u = (X - \lambda_2) \cdots (X - \lambda_n)(X - \lambda_{n+1}).$$

L'unicité de la factorisation de χ_u donne $\lambda_1 = \lambda_{n+1}$.

On recommence avec les familles $(x_3, \ldots, x_{n+1}, x_1)$ et ainsi de suite (permutations circulaires en omettant un vecteur) jusqu'à $(x_{n+1}, x_1, \ldots, x_{n-1})$, pour obtenir successivement les égalités

$$\lambda_2 = \lambda_1, \quad \lambda_3 = \lambda_2, \quad \cdots, \quad \lambda_{n+1} = \lambda_n.$$

Les λ_k sont donc tous égaux entre eux. La matrice de u dans n'importe laquelle des bases mentionnées (ou évoquées) est donc $\lambda_1 \mathbf{I}_n$, si bien que u est égal à $\lambda_1 \mathbf{Id}_E$.

Exercice 3. (Exercice 9 de la fiche musclée de 2016.) Soit $A \in \mathcal{M}_2(\mathbb{R})$. Existe-t-il une matrice P de $SO_2(\mathbb{R})$ telle que la matrice PAP^{-1} ait ses coefficients diagonaux égaux?

Solution de l'exercice 3. On introduit les coefficients de la matrice A

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}.$$

Les matrices de $SO_2(\mathbb{R})$ sont exactement les matrices de la forme

$$R(\theta) = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}.$$

Soit $\theta \in \mathbb{R}$. Posons $B(\theta) = R(\theta)AR(\theta)^{-1}$, ce qui donne $B(\theta) = R(\theta)AR(-\theta)$. Un calcul qu'il ne sert à rien de détailler donne

$$(B(\theta))_{1,1} = a\cos^2(\theta) - (b+c)\cos(\theta)\sin(\theta) + d\sin^2(\theta)$$
 et $(B(\theta))_{2,2} = a\sin^2(\theta) + (b+c)\cos(\theta)\sin(\theta) + d\cos^2(\theta)$.

En soustrayant, il vient

$$(B(\theta))_{1,1} - (B(\theta))_{2,2} = (a-d)\cos(2\theta) - (b+c)\sin(2\theta).$$

Cette expression se met sous la forme $\lambda \sin(2\theta - \varphi)$ pour un certain couple (λ, φ) de constantes indépendantes de θ . Il suffit alors de choisir $\theta = \varphi/2$ pour que les deux coefficients diagonaux de $B(\theta)$ soient égaux.

Exercice 4. (Exercice 15 de la fiche musclée de 2016.) Étant donné une suite réelle $(a_n)_{n\in\mathbb{N}}$, dire qu'elle est sous-additive signifie qu'elle vérifie la propriété

$$\forall (n,m) \in \mathbb{N}^2, \quad a_{n+m} \leqslant a_n + a_m.$$

a. On considère une suite $(a_n)_{n\in\mathbb{N}}$ sous-additive et on suppose que la suite $(a_n/n)_{n\geqslant 1}$ est minorée. On pose

$$\alpha = \inf \left\{ \frac{a_n}{n} ; n \in \mathbb{N}^* \right\}.$$

Montrer que a_n/n tend vers α quand n tend vers $+\infty$.

b. On considère une fonction $f: \mathbb{R} \to \mathbb{R}$ continue et croissante. On fait l'hypothèse

$$\forall x \in \mathbb{R}, \qquad f(x+1) = f(x) + 1.$$

Montrer que pour tout x réel, la suite de terme général $\frac{f^n(x)-x}{n}$ converge. Ici, la notation f^n désigne l'itérée d'ordre n de f.

 ${\bf c.}$ Montrer que la limite de la question précédente est indépendante de x.

Solution de l'exercice 4. a. Soit $\varepsilon > 0$. Le nombre $\alpha + \varepsilon$ n'est pas un minorant de l'ensemble

$$\left\{\frac{a_n}{n} \; ; \; n \in \mathbb{N}^* \right\}$$

(le plus grand des minorants de cet ensemble est α) donc il existe $p \in \mathbb{N}^*$ tel que

$$\frac{a_p}{p} < \alpha + \varepsilon.$$

Soit $n \in \mathbb{N}^*$. Notons q et r le quotient de la division euclidienne de n par p. Cela s'écrit

$$n = pq + r$$
 et $0 \le r \le p - 1$.

En itérant la sous-additivité, il vient

$$a_n = a_{pq+r} \leqslant a_p + a_{p(q-1)+r} \leqslant \ldots \leqslant a_p + \cdots + a_p + a_r = qa_p + a_r.$$

En isolant q, il vient

$$q = \frac{n-r}{p}$$
 puis $\frac{a_n}{n} \leqslant \frac{a_p}{p} + \frac{1}{n} \left(a_r - \frac{r}{p} a_p \right)$.

Le reste r prend un nombre fini de valeurs donc les nombres de la forme $a_r - \frac{r}{p}a_p$ sont en nombre fini. Notons c le plus grand d'entre eux. On obtient alors

$$\frac{a_n}{n} \leqslant \alpha + \varepsilon + \frac{c}{n}.$$

Le quotient c/n tend vers 0 quand l'entier n tend vers 0. Il existe donc un rang $n_{\varepsilon} \in \mathbb{N}^*$ tel que

$$\forall n \geqslant n_{\varepsilon}, \quad \frac{c}{n} \leqslant \varepsilon.$$

On a alors démontré ceci

$$\forall \varepsilon > 0, \quad \exists n_{\varepsilon} \in \mathbb{N}^*, \quad \forall n \geqslant n_{\varepsilon}, \quad \alpha \frac{a_n}{n} \leqslant \alpha + 2\varepsilon.$$

On en déduit que la suite de terme général a_n/n converge vers α .

b. Fixons $x \in \mathbb{R}$. Pour tout $n \in \mathbb{N}$, posons $a_n = f^n(x) - x$.

Prenons deux entiers n et m dans \mathbb{N} .

$$a_{n+m} = f^{n+m}(x) - x = f^n(f^m(x)) - x = f^n(u_m + x) - (u_m + x) + u_m.$$

Si u_m était un entier, on pour rait simplifier les choses mais il n'y a aucune raison pour que ce soit le cas. On peut néanmoins encadrer u_m entre deux entiers. Not ons k la partie entière de u_m . On a alors

$$k + x \leqslant u_m + x \leqslant k + 1 + x.$$

La croissance de f donne la croissance de f^n puis

$$f^n(x+k) \leqslant f^n(x+u_m) \leqslant f^n(x+k+1).$$

Une itération de l'identité f(t+1)=f(t)+1 donne $f^n(x+k)=f^n(x)+k$ donc

$$f^{n}(x) + k \leq f^{n}(x + u_{m}) \leq f^{n}(x) + k + 1.$$

On a aussi l'encadrement $-x-k-1 \leqslant -(u_m+k) \leqslant -x-k$ donc

$$f^{n}(x) - x - 1 \le f^{n}(u_{m} + x) - (u_{m} + x) \le f^{n}(x) - x + 1$$

puis

$$a_n + a_m - 1 \leqslant a_{n+m} \leqslant a_n + a_m + 1.$$

Pour tout $n \in \mathbb{N}$, posons alors $b_n = a_n + 1$. On en tire les inégalités

$$\forall (n,m) \in \mathbb{N}^2, \quad b_n + b_m - 2 \leqslant b_{n+m} \leqslant b_n + b_m.$$

En particulier, la suite $(b_n)_{n\in\mathbb{N}}$ est sous-additive. La minoration donne

$$\forall n \in \mathbb{N}^*, \quad b_n - b_{n-1} \geqslant -2$$

puis

$$\forall n \in \mathbb{N}^*, \quad b_n \geqslant -2n + b_0.$$

On en déduit que la suite de terme général b_n/n est minorée. Tout ceci prouve que la suite de terme général b_n/n est convergente. La relation

$$\forall n \in \mathbb{N}^*, \quad \frac{a_n}{n} = \frac{b_n}{n} - \frac{1}{n}$$

montre que la suite de terme général a_n/n est également convergente.

c. Notons $a_n(x)$ ce qui était noté a_n à la question précédente, afin de tenir compte de la dépendance en x. Prenons x et y dans \mathbb{R} . Notons k la partie entière de y-x, ce qui donne

$$k \leqslant y - x \leqslant k + 1$$
 puis $x + k \leqslant y \leqslant x + k + 1$.

Soit $n \in \mathbb{N}^*$. La croissance de f donne

$$f^n(x+k) \leqslant f^n(y) \leqslant f^n(x+k+1)$$
 puis $f^n(x) + k \leqslant f^n(y) \leqslant f^n(x) + k + 1$.

Il vient ensuite

$$a_n(x) - 1 \leqslant a_n(y) \leqslant a_n(x) + 1$$
 puis $\frac{a_n(x)}{n} - \frac{1}{n} \leqslant \frac{a_n(y)}{n} \leqslant \frac{a_n(x)}{n} + 1$.

En faisant tendre n vers $+\infty$, on voit que $a_n(x)/n$ et $a_n(y)/n$ ont la même limite.

Exercice 5. (Exercice 15 de la fiche musclée de 2016.) Soient a et b réels avec a < 0 < b.

Trouver un équivalent de $\int_a^b e^{-\lambda(x+x^3)} dx$ quand λ tend vers $+\infty$.

Solution de l'exercice 5. Notons $I(\lambda)$ l'intégrale en question. Prenons $\lambda > 0$ et écrivons

$$I(\lambda) = \int_a^b (1+3x^2)e^{-\lambda(x+x^3)} \times \frac{1}{1+3x^2} dx.$$

On intègre par parties : on primitive $x\mapsto (1+3x^2)\mathrm{e}^{-\lambda(x+x^3)}$ en $x\mapsto -\mathrm{e}^{-\lambda(x+x^3)}/\lambda$ et on dérive $x\mapsto 1/(1+3x^2)$.

$$\begin{split} \mathrm{I}(\lambda) &= -\frac{1+3b^2}{\lambda} \mathrm{e}^{-\lambda(b+b^3)} + \frac{1+3a^2}{\lambda} \mathrm{e}^{-\lambda(a+a^3)} - \frac{1}{\lambda} \int_a^b \mathrm{e}^{-\lambda(x+x^3)} \frac{6x}{(1+3x^2)^2} \; \mathrm{d}x. \end{split}$$
 Posons $\mu(\lambda) = \int_a^b \mathrm{e}^{-\lambda(x+x^3)} \frac{6x}{(1+3x^2)^2} \; \mathrm{d}x$ et $g(x) = \frac{6x}{(1+3x^2)^2}.$

La fonction g est continue sur le segment [a,b] donc elle est bornée. On obtient les majorations

$$|\mu(\lambda)| \leqslant \int_a^b e^{-\lambda(x+x^3)} |g(x)| dx \leqslant ||g||_{\infty} \int_a^b e^{-\lambda(x+x^3)} dx = ||g||_{\infty} \times I(\lambda).$$

En particulier, le terme $\mu(\lambda)/\lambda$ est négligeable devant $I(\lambda)$ quand λ tend vers $+\infty$.

La fonction $s \mapsto s + s^3$ est strictement croissante sur \mathbb{R} donc $-(a+a^3) > -(b+b^3)$. On en déduit que $e^{-\lambda(b+b^3)}$ est négligeable devant $e^{-\lambda(a+a^3)}$ quand λ tend vers $+\infty$.

Ainsi, quand λ tend vers $+\infty$, on obtient la relation

$$I(\lambda) (1 + o(1)) = \frac{1 + 3a^2}{\lambda} e^{-\lambda(a+a^3)} (1 + o(1)).$$

Un équivalent de $I(\lambda)$ est donc $\frac{1+3a^2}{\lambda}e^{-\lambda(a+a^3)}$.

Question. Où a-t-on utilisé la condition a < 0 < b?

Réponse. On a utilisé la condition a < b pour négliger une exponentielle devant une autre mais la position de a et b relativement à 0 n'a aucune importance.

Exercice 6. (Exercice 39 de la fiche musclée de 2016.) Soient A et B deux événements d'un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$. Prouver l'inégalité

$$|\mathbb{P}(A \cap B) - \mathbb{P}(A)\mathbb{P}(B)| \leqslant \frac{1}{4}$$
.

Caractériser l'égalité.

Solution de l'exercice 6. On introduit les variables aléatoires 1_A et 1_B , qui suivent une loi de Bernoulli, avec pour paramètres respectifs $\mathbb{P}(A)$ et $\mathbb{P}(B)$.

On observe alors les égalités

$$\mathbb{P}(A) = \mathbb{E}(1_A), \quad \mathbb{P}(B) = \mathbb{E}(1_B), \quad \mathbb{P}(A \cap B) = \mathbb{E}(1_{A \cap B}) = \mathbb{E}(1_A \times 1_B) \qquad \text{puis} \qquad \mathbb{P}(A \cap B) - \mathbb{P}(A)\mathbb{P}(B) = \text{Cov}(1_A, 1_B).$$

L'inégalité de Cauchy-Schwarz (de la covariance) donne alors

$$|\mathbb{P}(A \cap B) - \mathbb{P}(A)\mathbb{P}(B)| \leq \sqrt{\mathbb{V}(1_A)} \sqrt{\mathbb{V}(1_B)}$$

Posons $a = \mathbb{P}(A)$ et $b = \mathbb{P}(B)$. On connaît alors les valeurs $\mathbb{V}(1_A) = a(1-a)$ et $\mathbb{V}(1_B) = b(1-b)$.

Les variations de la fonction $u: t \mapsto t(1-t)$ montrent qu'elle atteint un maximum en 1/2, égal à 1/4. La majoration ci-dessus donne donc

$$|\mathbb{P}(A\cap B) - \mathbb{P}(A)\mathbb{P}(B)| \leqslant \sqrt{\frac{1}{4}}\sqrt{\frac{1}{4}} = \frac{1}{4}.$$

Passons au cas d'égalité.

Analyse. On suppose que $|\mathbb{P}(A \cap B) - \mathbb{P}(A)\mathbb{P}(B)| = 1/4$.

Cela force les égalités a(1-a) = 1/4 et b(1-b) = 1/4 donc a = 1/2 et b = 1/2 (le maximum de u est atteint seulement en 1/2, les variations étant strictes).

Le cas d'égalité de l'inégalité de Cauchy-Schwarz donne l'existence de deux constantes c et d telles que $1_{\rm B}-(c1_{\rm A}+d)$ soit presque sûrement nulle. La démonstration de ce cas d'égalité donne

$$c = \frac{\operatorname{Cov}(1_{\mathrm{A}}, 1_{\mathrm{B}})}{\mathbb{V}(1_{\mathrm{A}})}$$
 et $d = \mathbb{E}(1_{\mathrm{B}}) - c\mathbb{E}(1_{\mathrm{A}}).$

La variance de 1_A vaut 1/4. La covariance vaut 1/4 ou -1/4. Dans le premier cas, on obtient c = 1 et d = 0. Dans le deuxième cas, on obtient c = -1 et d = 1.

Dans le premier cas, on voit que $1_{\rm B}$ et $1_{\rm A}$ sont presque sûrement égales, ce qui signifie que A et B diffèrent d'un événement de probabilité nulle

$$\mathbb{P}(A\setminus B)+\mathbb{P}(B\setminus A)=0.$$

Dans le deuxième cas, on voit que 1_B et $1-1_A$ sont presque sûrement égales, or $1-1_A=1_{\bar{A}}$, ce qui signifie que B et \bar{A} diffèrent d'un événement de probabilité nulle.

Finalement, A et B sont de probabilité 1/2 et (presque confondus ou presque contraires l'un de l'autre).

Synthèse. On suppose que A et B sont de probabilité 1/2.

Si A et B diffèrent d'un événement de probabilité nulle, on a $\mathbb{P}(A \cap B) = \mathbb{P}(A) = 1/2$ donc

$$\mathbb{P}(A \cap B) - \mathbb{P}(A)\mathbb{P}(B) = \frac{1}{2} - \frac{1}{4} = \frac{1}{4}.$$

Si \bar{A} et B diffèrent d'un événement de probabilité nulle, on a $\mathbb{P}(A \cap B) = 0$ donc

$$\mathbb{P}(A\cap B) - \mathbb{P}(A)\mathbb{P}(B) = 0 - \frac{1}{4} = -\frac{1}{4}.$$