Exercice 1. Soit un entier $n \ge 2$. Soit \mathcal{L} un endomorphisme de $\mathcal{S}_n(\mathbb{R})$. On fait l'hypothèse

$$\forall O \in \mathcal{O}_n(\mathbb{R}), \quad \forall S \in \mathcal{S}_n(\mathbb{R}), \quad \mathcal{L}(O^TSO) = O^T\mathcal{L}(S)O.$$

Le but de cet exercice est de montrer que \mathcal{L} est de la forme $S \mapsto \mu S + \lambda tr(S)I_n$ pour un certain couple $(\lambda, \mu) \in \mathbb{R}^2$.

On note classiquement $(E_{i,j})_{1\leqslant i,j\leqslant n}$ la base canonique de $\mathcal{M}_n(\mathbb{R})$ et $(E_i)_{1\leqslant i\leqslant n}$ la base canonique de $\mathcal{M}_{n,1}(\mathbb{R})$.

Pour tout couple (i, j) d'indices distincts dans [1, n], on note $P_{i,j}$ la matrice de $\mathcal{M}_n(\mathbb{R})$ obtenue à partir de la matrice identité I_n en permutant la i-ième et la j-ième colonnes.

- **a.** Calculer $P_{i,j}^T \times E_{i,i} \times P_{i,j}$.
- **b.** En remarquant que $E_{1,1}$ commute avec toutes les matrices diagonales de $\mathcal{O}_n(\mathbb{R})$, montrer que $\mathcal{L}(E_{1,1})$ est diagonale.

On note $\lambda_1, \ldots, \lambda_n$ ses coefficients diagonaux.

c. En exploitant les relations de la première question, montrer que $\lambda_2,\ldots,\lambda_n$ sont égaux.

En déduire comment choisir λ et μ pour que l'expression attendue pour $\mathcal{L}(E_{1,1})$ soit la bonne. Dans la suite, on suppose que λ et μ sont choisis ainsi.

- **d.** Montrer que l'expression attendue est la bonne pour $\mathcal{L}(\mathbf{E}_{i,i})$ puis pour les images des matrices diagonales.
- e. Conclure.

Exercice 2. Soit E un espace euclidien. Soient $x_1, \ldots, x_p, y_1, \ldots, y_p$ des vecteurs de E.

Pour tout couple (i, j) d'indices, on fait l'hypothèse $(x_i|x_j) = (y_i|y_j)$. Montrer qu'il existe une isométrie f de E qui envoie x_1, \ldots, x_p sur y_1, \ldots, y_p respectivement.

Exercice 3. (Inégalité de Gronwall) Soient u et v deux fonctions continues et positives sur l'intervalle $[0, +\infty[$. On suppose qu'il existe une constante c positive vérifiant la propriété

$$\forall x \in [0, +\infty[, \quad u(x) \le c + \int_0^x u(t)v(t) dt.$$

Montrer la domination

$$\forall x \in [0, +\infty[, \quad u(x) \leqslant c \exp\left(\int_0^x v(t) dt\right).$$

Pour ça, on introduira les fonctions

$$U: x \mapsto \int_0^x u(t) dt$$
, $V: x \mapsto \int_0^x v(t) dt$, $W: x \mapsto \int_0^x u(t)v(t) dt$,

puis on majorera W'(x) à l'aide de l'hypothèse, après quoi on s'efforcera de reconnaître la dérivée d'un produit.

Exercice 4. Soient X et Y deux variables aléatoires à valeurs dans Z. On pose

$$d(\mathbf{X},\mathbf{Y}) = \sup_{\mathbf{A} \subset \mathbb{Z}} \left(\mathbb{P}(\mathbf{X} \in \mathbf{A}) - \mathbb{P}(\mathbf{Y} \in \mathbf{A}) \right).$$

On pose $B = \{k \in \mathbb{Z} : \mathbb{P}(X = k) > \mathbb{P}(Y = k)\}.$

- **a.** Montrer que $d(X, Y) \leq \mathbb{P}(X \neq Y)$.
- **b.** Montrer que $d(X, Y) = \mathbb{P}(X \in B) \mathbb{P}(Y \in B)$.
- **c.** Montrer que $d(X, Y) = \frac{1}{2} \sum_{k \in \mathbb{Z}} |\mathbb{P}(X = k) \mathbb{P}(Y = k)|$.