Chapitre 16 — probabilités

1 Ensembles dénombrables

1.1 Définition et exemples

Définition d'un ensemble dénombrable : c'est un ensemble en bijection avec \mathbb{N} .

Exemples : l'ensemble \mathbb{Z} , l'ensemble des nombres pairs, toute partie infinie de \mathbb{N} .

Tout ensemble infini qui s'injecte dans $\mathbb N$ est dénombrable. Exemples : les ensembles $\mathbb N^k$ et $\mathbb Q$.

1.2 Exemples d'ensembles non dénombrables

L'ensemble $\{a,b\}^{\mathbb{N}}$, l'ensemble des parties de \mathbb{N} , l'ensemble \mathbb{R} .

2 Espaces probabilisés

2.1 Tribu

Une tribu sur un ensemble Ω est un sous-ensemble \mathscr{A} de $\mathcal{P}(\Omega)$ qui possède Ω pour élément, stable par passage au complémentaire et par réunion dénombrable.

Propriétés : $\emptyset \in \mathcal{A}$, stabilité par intersection dénombrable, stabilité par réunion finie, stabilité par intersection finie.

L'ensemble $\mathcal{P}(\Omega)$ est une tribu sur Ω .

Un espace probabilisable est un couple d'ensembles (Ω, \mathscr{A}) tel que \mathscr{A} soit une tribu sur Ω . Les éléments de \mathscr{A} sont appelés événements.

Système complet d'événements dénombrable.

2.2 Probabilité sur un espace probabilisable

Une probabilité sur un espace probabilisable (Ω, \mathscr{A}) est une fonction \mathbb{P} définie sur \mathscr{A} , à valeurs réelles positives, telle que $\mathbb{P}(\Omega)$ soit égal à 1 et telle que la relation

$$\mathbb{P}\left(\bigcup_{n=0}^{+\infty} \mathbf{A}_n\right) = \sum_{n=0}^{+\infty} \mathbb{P}(\mathbf{A}_n)$$

soit valable pour toute suite $(A_n)_{n\geqslant 0}$ d'événements deux à deux incompatibles (propriété de σ -additivité). Le triplet $(\Omega, \mathscr{A}, \mathbb{P})$ est alors un espace probabilisé.

Les formules présentées dans le cas d'un espace probabilisé fini demeurent vraies dans ce contexte.

Continuité croissante. Si $(A_n)_{n\geqslant 0}$ est une suite croissante (pour l'inclusion) d'événements, alors

$$\mathbb{P}\left(\bigcup_{n=0}^{+\infty} \mathbf{A}_n\right) = \lim_{n \to +\infty} \mathbb{P}(\mathbf{A}_n).$$

Continuité décroissante. Si $(A_n)_{n\geqslant 0}$ est une suite décroissante (pour l'inclusion) d'événements, alors

$$\mathbb{P}\left(\bigcap_{n=0}^{+\infty} A_n\right) = \lim_{n \to +\infty} \mathbb{P}(A_n).$$

Sous-additivité. Si $(A_n)_{n\geqslant 0}$ est une suite quelconque d'événements, alors

$$\mathbb{P}\left(\bigcup_{n=0}^{+\infty} \mathbf{A}_n\right) \leqslant \sum_{n=0}^{+\infty} \mathbb{P}(\mathbf{A}_n).$$

2.3 Conditionnement et indépendance

Définition de $\mathbb{P}(A|B)$, également notée $\mathbb{P}_B(A)$, dans le cas où $\mathbb{P}(B)$ est non nul. La fonction \mathbb{P}_B est alors une probabilité sur l'espace probabilisé (Ω, \mathscr{A}) .

Formule des probabilités composées.

Système complet dénombrable d'événements. Formules des probabilités totales

$$\mathbb{P}(\mathbf{B}) = \sum_{n=0}^{+\infty} \mathbb{P}(\mathbf{B} \cap \mathbf{A}_n) = \sum_{n=0}^{+\infty} \mathbb{P}_{\mathbf{A}_n}(\mathbf{B}) \mathbb{P}(\mathbf{A}_n)$$

dans le cas où la suite $(A_n)_{n\in\mathbb{N}}$ est un système complet d'événements. La formule reste valable dans le cas où la suite $(A_n)_{n\geqslant 0}$ vérifie les hypothèses plus faibles $\mathbb{P}(A_i\cap A_j)=0$ si $i\neq j$ et $\sum_{n=0}^{+\infty}\mathbb{P}(A_n)=1$.

Formule de Bayes.

Indépendance de deux événements. Si $\mathbb{P}(B)$ n'est pas nul, l'indépendance de A et B équivaut à $\mathbb{P}_B(A) = \mathbb{P}(A)$. Indépendance mutuelle d'une famille finie d'événements. L'indépendance des événements deux par deux ne suffit pas s'il y a au moins trois événements.

3 Variables aléatoires discrètes

3.1 Variable aléatoire discrète

Une variable aléatoire discrète X sur l'espace probabilisable (Ω, \mathscr{A}) est une fonction définie sur Ω telle que l'univers image $X(\Omega)$ soit fini ou dénombrable et telle que pour tout x de $X(\Omega)$, l'image réciproque $X^{-1}(\{x\})$ soit un élément de \mathscr{A} (c'est-à-dire un événement).

Pour toute partie U de l'univers image $X(\Omega)$, l'ensemble $X^{-1}(U)$ est un événement.

L'événement $X^{-1}(U)$ est noté $[X \in U]$ ou $(X \in U)$ ou $\{X \in U\}$.

Stabilité par combinaison linéaire et par produit. Si f est une fonction définie sur $X(\Omega)$, alors f(X) est une variable aléatoire.

3.2 Loi d'une variable aléatoire discrète

Loi d'une variable aléatoire discrète. Exemple : loi géométrique.

Fonction de répartition. Croissance. Limites.

Théorème d'existence (admis) : si X prend ses valeurs dans $\{x_n; n \in \mathbb{N}\}$ et si $(p_n)_{n \in \mathbb{N}}$ est une suite de nombres réels positifs dont la somme vaut 1, alors il existe sur (Ω, \mathscr{A}) une probabilité \mathbb{P} telle que

$$\forall n \in \mathbb{N}, \qquad \mathbb{P}(X = x_n) = p_n.$$

Variante : condition suffisante pour définir une loi de variable aléatoire. Exemple : loi de Poisson.

3.3 Couple de variables aléatoires discrètes

Loi conjointe. Lois marginales. Loi conditionnelle de Y sachant [X = x]. Loi de X + Y.

3.4 Indépendance

Dire que les variables aléatoires X et Y sont indépendantes signifie

$$\forall (x,y) \in \mathcal{X}(\Omega) \times \mathcal{Y}(\Omega), \qquad \mathbb{P}([\mathcal{X}=x] \cap [\mathcal{Y}=y]) = \mathbb{P}(\mathcal{X}=x) \times \mathbb{P}(\mathcal{Y}=y).$$

Si X et Y sont indépendantes, alors, pour toutes parties A de $X(\Omega)$ et B de $Y(\Omega)$,

$$\mathbb{P}([X \in A] \cap [Y \in B]) = \mathbb{P}(X \in A) \times \mathbb{P}(Y \in B).$$

Loi de X + Y. Cas de la loi de Poisson. Cas de la loi géométrique.

Si X et Y sont indépendantes, alors, pour toutes fonctions f et g telles que f(X) et g(Y) soient bien définies, les variables aléatoires f(X) et g(Y) sont indépendantes.

Loi conjointe d'un n-uplet (X_1, \ldots, X_n) de variable aléatoires. Variable aléatoire de la forme $f(X_1, \ldots, X_n)$.

Variables aléatoires mutuellement indépendantes. Suites de variables aléatoires mutuellement indépendantes. Jeu de pile ou face infini.

Loi de $\max(X_1, \ldots, X_n)$.

4 Moments

4.1 Espérance

On note $\{x_n; n \in \mathbb{N}\}$ l'univers image de la variable aléatoire X. Dire que la variable aléatoire X est d'espérance finie signifie que la série de terme général $x_n\mathbb{P}(X=x_n)$ est absolument convergente. Si tel est le cas, l'espérance de la variable aléatoire X est la somme de cette série, notée $\mathbb{E}(X)$.

On admet que si on change la numérotation des éléments de l'univers image $X(\Omega)$, alors la valeur de l'espérance reste inchangée.

Dans le cas où X est à valeurs dans N, l'espérance de X est reliée à la fonction de répartition par la formule

$$\mathbb{E}(\mathbf{X}) = \sum_{n=1}^{+\infty} \mathbb{P}(\mathbf{X} \geqslant n).$$

Critère de domination (pas au programme) : si $|X| \le Y$ et si Y est d'espérance finie, alors X est d'espérance finie aussi.

4.2 Théorème du transfert

Soit f une fonction définie sur l'univers image $X(\Omega)$. La variable aléatoire f(X) est d'espérance finie si, et seulement si, la série de terme général $f(x_n)\mathbb{P}(X=x_n)$ converge absolument. Si c'est le cas, on obtient alors

$$\mathbb{E}(f(\mathbf{X})) = \sum_{n=0}^{+\infty} f(x_n) \mathbb{P}(\mathbf{X} = x_n).$$

Exemples : si $X(\Omega) \subset \mathbb{N}$, alors $(-1)^X$ est d'espérance finie ; si $X(\Omega) \subset \mathbb{N}^*$, alors 1/X est d'espérance finie.

Moments. Moments centrés.

Calcul de $\mathbb{E}(XY)$ dans le cas fini.

4.3 Propriétés algébriques

Linéarité de l'espérance. Positivité, croissance.

Formule $\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$ dans le cas où X et Y sont indépendantes.

Si X² est d'espérance finie, alors X l'est aussi.

Si X^2 et Y^2 sont d'espérance finie, alors XY l'est aussi.

4.4 Variance et covariance

Variance et écart-type d'une variable aléatoire discrète X telle que X² soit d'espérance finie.

Identité $\mathbb{V}(aX + b) = a^2 \mathbb{V}(X)$.

Inégalités de Markov et de Bienaymé-Tchebychev.

Covariance. Variance d'une somme finie. Cas où les variables aléatoires sont deux à deux indépendantes.

Coefficient de corrélation. Encadrement $|\rho(X, Y)| \leq 1$ (inégalité de Cauchy-Schwarz).

4.5 Série génératrice d'une variable aléatoire à valeurs entières

La série génératrice d'une variable aléatoire X à valeurs dans $\mathbb N$ est la série entière

$$\sum_{n \ge 0} \mathbb{P}(X = n) t^n.$$

Le rayon de convergence vaut au moins 1. La fonction génératrice de X est alors la fonction

$$G_X: t \mapsto \mathbb{E}(t^X) = \sum_{n=0}^{+\infty} \mathbb{P}(X=n)t^n.$$

L'égalité $G_X = G_Y$ équivaut à ce que X et Y aient la même loi.

L'existence de $\mathbb{E}(X)$ équivaut à la dérivabilité de G_X en 1. Dans ce cas, l'espérance de X vaut $G'_X(1)$.

L'existence de $\mathbb{V}(X)$ équivaut à l'existence de $G''_X(1)$. Formule donnant $\mathbb{V}(X)$.

Si le rayon de la série génératrice de X est strictement supérieur à 1, alors X admet des moments à tous les ordres.

Fonction génératrice G_{X+Y} dans le cas où X et Y sont indépendantes.

5 Lois usuelles

5.1 Loi géométrique

Loi géométrique $\mathcal{G}(p)$. Fonction génératrice, espérance et variance.

Elle modélise le rang du premier succès dans une suite illimitée d'épreuves de Bernoulli indépendantes de paramètre p.

Caractérisation comme loi sans mémoire. Si X suit la loi $\mathcal{G}(p)$, alors

$$\forall (n,k) \in \mathbb{N}^2, \quad \mathbb{P}(X > n + k | X > n) = \mathbb{P}(X > k).$$

Réciproquement, on suppose que X est à valeurs entières, que X vérifie l'inégalité ci-dessus et que $\mathbb{P}(X=1) > 0$. Alors X suit une loi géométrique.

5.2 Loi de Poisson

Loi de Poisson $\mathcal{P}(\lambda)$. Fonction génératrice, espérance et variance. Somme de deux variables indépendantes suivant une loi de Poisson. Généralisation.

5.3 Complément : loi binomiale négative

Loi de la somme $X_1 + \cdots + X_m$, où les X_i sont mutuellement indépendantes et suivent la loi $\mathcal{G}(p)$. Interprétation : rang du m-ième succès dans une suite infinie de pile ou face.

6 Propriétés asymptotiques

6.1 Loi faible des grands nombres

Soit $(X_n)_{n\geqslant 1}$ une suite de variables aléatoires indépendantes de même loi. On suppose que $(X_1)^2$ est d'espérance finie.

On note $m = \mathbb{E}(X_1)$ et $S_n = X_1 + \cdots + X_n$. Alors, pour tout $\varepsilon > 0$,

$$\lim_{n \to +\infty} \mathbb{P}\left(\left| \frac{\mathbf{S}_n}{n} - m \right| \geqslant \varepsilon \right) = 0.$$

Interprétation: la moyenne expérimentale est probablement proche de la moyenne théorique.

6.2 Approximation de la loi binomiale par la loi de Poisson

Soit $(p_n)_{n\geqslant 1}$ une suite d'éléments de]0,1[. Soit $\lambda>0$. On suppose que np_n tend vers λ quand n tend vers $+\infty$. Pour tout n dans \mathbb{N}^* , on considère une variable aléatoire X_n de loi $\mathscr{B}(n,p_n)$. Alors, pour tout k dans \mathbb{N} ,

$$\lim_{n \to +\infty} \mathbb{P}(X_n = k) = e^{-\lambda} \frac{\lambda^k}{k!}.$$

Programme de colles nº 11 (du lundi 14 au vendredi 25 mars 2022)

Tout ce chapitre.

Pas de questions de cours imposées.