Plan de cours année scolaire 2022-2023

Complément pour les 5/2

1 Fonctions convexes

Je renvoie à ce poly de mon collègue David Blottière : lien cliquable. Le paragraphe 1.3 sur les barycentres n'est pas nécessaire mais il ne manque pas d'intérêt.

2 Inégalité de Taylor-Lagrange

Soit I un intervalle de \mathbb{R} . Soit $n \in \mathbb{N}$. Soit $f \in \mathcal{C}^{n+1}(I,\mathbb{C})$. Pour tout couple (a,b) d'éléments de I, on note S(a,b) le segment d'extrémités a et b. L'inégalité de Taylor-Lagrange s'écrit alors

$$\forall (a,b) \in I^2, \quad \left| f(b) - \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (b-a)^k \right| \leqslant ||f^{(n+1)}||_{\infty,S(a,b)} \times \frac{|b-a|^{n+1}}{(n+1)!}.$$

Exercice 1. (*) Démontrer l'inégalité de Taylor-Lagrange.

Exercice 2. (*) Soit $\alpha \in \mathbb{C}$.

a. Appliquer l'inégalité de Taylor-Lagrange à la fonction $f: t \mapsto e^{\alpha t}$ pour le choix (a, b) = (0, x).

b. Qu'obtient-on en faisant tendre n vers $+\infty$?

3 Théorème du rang : version géométrique

Soient E et F deux K-espaces vectoriels. Soit $u \in \mathcal{L}(E, F)$. Soit H un sous-espace vectoriel de E. On suppose que H et Ker(u) sont supplémentaires dans E. On définit alors la double restriction $\tilde{u}: x \mapsto u(x)$ de H vers Im(u).

La version géométrique du théorème du rang affirme que \tilde{u} est un isomorphisme.

Exercice 3. (*) Démontrer cette propriété.

Exercice 4. (*) Déduire de cette propriété une démonstration du théorème du rang.

Exercice 5. (*) On suppose que E et F sont de dimension finie. On pose $p = \dim(E)$ et $n = \dim(F)$. On pose aussi $r = \operatorname{rg}(u)$.

Construire une base $\mathcal E$ de E et une base $\mathcal F$ de F telles que

$$M_{\mathcal{E},\mathcal{F}}(u) = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}.$$

Exercice 6. Lemme de factorisation (***) Soient E, F, G trois K-espaces vectoriels de dimension finie.

Soient $v \in \mathcal{L}(E, G)$ et $f \in \mathcal{L}(E, F)$.

Montrer que l'inclusion $\operatorname{Ker}(f) \subset \operatorname{Ker}(v)$ équivaut à l'existence de $u \in \mathcal{L}(F, G)$ telle que $v = u \circ f$.

Plan de cours année scolaire 2022-2023

4 Fractions rationnelles

Soient a_1, \ldots, a_n des nombres complexes deux à deux distincts. On note A l'ensemble $\mathbb{C}\setminus\{a_1,\ldots,a_n\}$ et on introduit le polynôme

$$P = \prod_{k=1}^{n} (X - a_k).$$

Théorème. Pour tout polynôme $Q \in \mathbb{C}_{n-1}[X]$, il existe un unique $(s_1, \dots, s_n) \in \mathbb{C}^n$ tel que

$$\forall z \in A, \quad \frac{Q(z)}{P(z)} = \sum_{k=1}^{n} \frac{s_k}{z - a_k}.$$

De plus, les coefficients s_k sont donnés par

$$s_k = \frac{\mathrm{Q}(a_k)}{\mathrm{P}'(a_k)} = \mathrm{Q}(a_k) \times \left(\prod_{\substack{1 \leqslant \ell \leqslant n \\ \ell \neq k}} (a_k - a_\ell)\right)^{-1}.$$

Exercice 7. (**) À l'aide des polynômes de Lagrange, démontrer cette propriété.

Exercice 8. (*) Qu'obtient-on en réduisant $\sum_{k=1}^{n} \frac{1}{z - a_k}$ au même dénominateur?

Exercice 9. (Lu sur Twitter) (*) On suppose que les a_k sont non nuls. Pour tout $r \in [0, n-2]$, prouver l'égalité

$$\sum_{k=1}^{n} \frac{(a_k)^r}{\mathrm{P}'(a_k)} = 0.$$

Exercice 10. (*) Soit un nombre complexe z tel que $|z| \neq 1$. À l'aide de sommes de Riemann, calculer l'intégrale

$$\int_0^{2\pi} \frac{\mathrm{d}t}{z - \mathrm{e}^{\mathrm{i}t}}.$$

Exercice 11. (*) Soit un entier $n \ge 2$. On pose $\omega = e^{i2k\pi/n}$.

- a. Reconnaître le polynôme $\prod_{k=1}^{n-1} (\mathbf{X} \boldsymbol{\omega}^k).$
- **b.** Simplifier la somme $\sum_{k=1}^{n-1} \frac{1}{1 \omega^k}.$

Exercice 12. (**) Pour tout $x \in \mathbb{R}$, on pose $f(x) = \frac{x^2 + 1}{x^4 + 1}$.

a. Pour tout $\theta \in \mathbb{R}$, vérifier l'identité

$$X^4 - 2X^2\cos(2\theta) + 1 = (X^2 - 2X\cos(\theta) + 1)(X^2 + 2X\cos(\theta) + 1).$$

b. En déduire un calcul de l'intégrale $\int_{\mathbb{R}} f(x) dx$ puis de l'intégrale $\int_{\mathbb{R}} \frac{1}{x^4 + 1} dx$.

Plan de cours année scolaire 2022-2023

5 Formes linéaires et hyperplans

5.1 Formes linéaires

Soit E un K-espace vectoriel. Une forme linéaire sur E est une application linéaire de E vers K.

L'ensemble des formes linéaires sur E, c'est-à-dire l'espace vectoriel $\mathcal{L}(E, \mathbb{K})$, est parfois noté E^* et appelé dual de E. Toutefois, ce terme et cette notation n'apparaissent pas dans le programme.

Dans le cas où E est de dimension finie, on peut observer que E et E* ont la même dimension.

Exemples.

- 1. La trace est une forme linéaire sur $\mathcal{M}_n(\mathbb{K})$.
- 2. Si E est un espace préhilbertien réel, alors pour tout vecteur h de E, l'application $x \mapsto (h|x)$ est une forme linéaire sur E.
- 3. La partie réelle et la partie imaginaire sont des formes linéaires sur le \mathbb{R} -espace vectoriel \mathbb{C} .
- 4. Les applications du type « évaluation en un point », c'est-à-dire de la forme $f \mapsto f(x_0)$, sont des formes linéaires sur tous les espaces de fonctions et sur tous les espaces de polynômes.

Représentation matricielle.

On suppose que E est de dimension finie et on considère une base $\mathcal{E} = (e_1, \dots, e_n)$. La famille $\mathcal{F} = (1)$ est alors la base canonique du \mathbb{K} -espace vectoriel \mathbb{K} .

Si ℓ est une forme linéaire sur E, alors sa matrice relative aux bases \mathcal{E} et \mathcal{F} est une matrice ligne de $\mathcal{M}_{1,n}(\mathbb{K})$.

Pour en savoir plus, je renvoie à mon poly sur le calcul matriciel : lien cliquable.

Exercice 13. (*) Étant donné deux bases \mathcal{E} et \mathcal{D} de E, trouver, avec démonstration, une formule de changement de base reliant les matrices $\mathcal{M}_{\mathcal{E},\mathcal{F}}(\ell)$ et $\mathcal{M}_{\mathcal{D},\mathcal{F}}(\ell)$.

5.2 Hyperplans

Définition. Soit E un K-espace vectoriel. Soit H un sous-espace vectoriel de E.

Dire que H est un hyperplan de E signifie qu'il existe un vecteur a non nul de E tel que $E = H \oplus Vect(a)$.

Remarques.

- 1. Si un tel a existe, il n'est pas unique, puisque tout multiple non nul de a convient également.
- 2. Dans le cas où E est de dimension finie, la définition ci-dessus équivaut à l'égalité $\dim(H) = \dim(E) 1$. Cette formule peut même être considérée comme la définition d'un hyperplan dans ce cas le cas de dimension infinie n'est officiellement pas au programme.

Exercice 14. (*) On suppose que a est un vecteur non nul tel que $E = H \oplus Vect(a)$.

Montrer que les vecteurs b tels que $E = H \oplus Vect(b)$ sont exactement ceux tels que $b \notin H$.

Exercice 15. (*) Soit ℓ une forme linéaire sur E. Vérifier que $Ker(\ell)$ est un hyperplan de E.

Exercice 16. (*) Réciproquement, soient H un hyperplan de E et a un vecteur non nul de E tel que $E = H \oplus Vect(a)$.

Montrer qu'il existe une forme linéaire ℓ non nulle sur E telle que le projecteur sur $\mathrm{Vect}(a)$ parallèlement à H soit l'application

$$x \mapsto \ell(x)a$$
.

Vérifier aussi que $H = Ker(\ell)$.

Exercice 17. (*) Soit ℓ une forme linéaire non nulle sur E. Soit φ une forme linéaire sur E.

Montrer l'équivalence

$$\varphi \in \operatorname{Vect}(\ell) \iff \operatorname{Ker}(\ell) \subset \operatorname{Ker}(\varphi).$$