PC* — mathématiques Devoir surveillé n° 5 — piste noire jeudi 26 janvier 2023 durée : 4 heures

Quelques consignes

- Ne pas utiliser de blanc correcteur.
- Écrire lisiblement et dans un français normal (sans abréviation).
- Écrire les numéros des questions dans la marge et respecter la numérotation de l'énoncé.
- Ne pas recopier l'énoncé (ni les titres des parties) et ne pas redéfinir les objets introduits par l'énoncé.

Problème I

On définit la fonction *cotangente* de $\mathbb{R} \setminus \pi \mathbb{Z}$ vers \mathbb{R} par la formule $\cot (t) = \frac{\cos(t)}{\sin(t)}$

On définit aussi la fonction $\zeta: \alpha \mapsto \sum_{n=1}^{+\infty} n^{-\alpha}$ de]1, +\infty[vers \mathbb{R}.

On définit sur $\mathbb{R} \setminus \mathbb{Z}$ les fonctions

$$f: x \mapsto \pi \cot(\pi x), \quad g: x \mapsto \frac{1}{x} + \sum_{n=1}^{+\infty} \left(\frac{1}{x+n} + \frac{1}{x-n}\right)$$

ainsi que la fonction D = f - g.

On définit enfin la fonction h de \mathbb{R} dans \mathbb{R} en posant h(0) = 1 et $h(x) = \frac{x}{e^x - 1}$ si $x \neq 0$.

Question 1. Justifier que la fonction g est bien définie sur $\mathbb{R} \setminus \mathbb{Z}$.

Question 2. Vérifier que les fonctions q et D sont impaires.

Question 3. Vérifier que les fonctions g et D sont 1-périodiques.

Question 4. Montrer que les fonctions g et D sont continues sur $\mathbb{R} \setminus \mathbb{Z}$.

Question 5. Pour tout $x \in \mathbb{R} \setminus \mathbb{Z}$, montrer l'identité $f\left(\frac{x}{2}\right) + f\left(\frac{x+1}{2}\right) = 2f(x)$.

Question 6. Pour tout $x \in \mathbb{R} \setminus \mathbb{Z}$, montrer l'identité $g\left(\frac{x}{2}\right) + g\left(\frac{x+1}{2}\right) = 2g(x)$.

Question 7. Montrer que la fonction D admet sur \mathbb{R} un prolongement continu. On notera ce prolongement \tilde{D} et on vérifiera que $\tilde{D}(0) = 0$.

Question 8. On pose $M = \sup{\{\tilde{D}(t) ; t \in [0,1]\}}$.

Montrer l'existence de $\alpha \in [0, 1]$ tel que $\tilde{D}(\alpha) = M$.

Question 9. Pour un tel α , montrer pour tout $n \in \mathbb{N}$ l'égalité $\tilde{D}(\alpha/2^n) = M$.

Question 10. En déduire que la fonction \tilde{D} est identiquement nulle sur \mathbb{R} .

Question 11. Pour tout $x \in \mathbb{R} \setminus \mathbb{Z}$, prouver l'identité $\pi x \cot(\pi x) = 1 + 2 \sum_{n=1}^{+\infty} \frac{x^2}{x^2 - n^2}$.

Question 12. Pour tout x non nul dans $]-2\pi, 2\pi[$, montrer l'égalité $\frac{x}{2}\cot\left(\frac{x}{2}\right)=1-\sum_{k=1}^{+\infty}\frac{\zeta(2k)}{2^{2k-1}\pi^{2k}}x^{2k}.$

Question 13. Pour tout x non nul dans $]-2\pi, 2\pi[$, en déduire l'égalité $\frac{\mathrm{i}x}{\mathrm{e}^{\mathrm{i}x}-1}=1-\frac{\mathrm{i}x}{2}-\sum\limits_{k=1}^{+\infty}\frac{\zeta(2k)}{2^{2k-1}\pi^{2k}}x^{2k}.$

Question 14. Pour tout $z \in \mathbb{C}$ tel que $|z| < 2\pi$, montrer l'égalité $z = (e^z - 1) \left(1 - \frac{z}{2} + \sum_{k=1}^{+\infty} \frac{(-1)^{k-1} \zeta(2k)}{2^{2k-1} \pi^{2k}} z^{2k}\right)$.

Question 15. En déduire que la fonction h est développable en série entière sur $]-2\pi,2\pi[$.

On note $(b_n)_{n\in\mathbb{N}}$ la suite réelle associée au développement en série entière de la fonction h par

$$\forall x \in]-2\pi, 2\pi[, \quad h(x) = \sum_{n=0}^{+\infty} b_n x^n.$$

Préciser l'expression de b_n .

Question 16. Pour tout $n \in \mathbb{N}$, justifier la relation

$$\sum_{k=0}^{n} \frac{b_k}{(n+1-k)!} = \begin{cases} 1 & \text{si } n=0\\ 0 & \text{si } n \geqslant 1. \end{cases}$$

Question 17. Calculer b_2 et b_4 puis en déduire les valeurs de $\zeta(2)$ et $\zeta(4)$.

Problème II

On fixe un nombre complexe z tel que $z \neq 1$ et $|z| \leq 1$. On définit la fonction

$$L: t \mapsto \int_0^t \frac{z}{1 - uz} \, \mathrm{d}u.$$

Question 18. Montrer que la fonction L est définie sur [0,1] et qu'elle est de classe \mathcal{C}^{∞} .

Pour tout $n \in \mathbb{N}^*$, on donnera une expression de la fonction $L^{(n)}$.

Question 19. Pour tout $t \in]0,1]$, justifier l'inégalité 1-t < |1-tz|.

Question 20. Montrer que $\int_0^1 \left| \frac{1-t}{1-tz} \right|^n dt$ tend vers 0 quand n tend vers $+\infty$.

Question 21. Montrer que $\int_0^1 \frac{z^{n+1}(1-t)^n}{(1-tz)^{n+1}} dt$ tend vers 0 quand n tend vers $+\infty$.

Question 22. Grâce à une formule de Taylor, en déduire que $L(1) = \sum_{n=1}^{+\infty} \frac{z^n}{n}$.

Question 23. Montrer que la fonction $\gamma:(t,u)\mapsto |1+ue^{it}|$, définie de \mathbb{R}^2 dans \mathbb{R} , est continue.

Question 24. Pour tout $a \in]0,\pi[$, montrer l'existence d'un nombre réel $m_a>0$ tel que

$$\forall (t, u) \in [-a, a] \times [0, 1], \quad |1 + ue^{it}| \geqslant m_a.$$

Question 25. Montrer que la fonction $F: t \mapsto \int_0^1 \frac{e^{it}}{1 + ue^{it}} du$ est de classe C^1 sur $] - \pi, \pi[$.

On donnera une expression de sa dérivée sous la forme d'une intégrale à paramètre.

Question 26. Pour tout $t \in]-\pi,\pi[$, prouver l'égalité $F'(t)=-\frac{1}{2}\tan(t/2)+\frac{1}{2}i.$

Question 27. En déduire la valeur de F(t) pour tout $t \in]-\pi,\pi[$.

Question 28. Soit $\theta \in]0, 2\pi[$. Montrer l'existence de $\sum_{n=1}^{+\infty} \frac{\cos(n\theta)}{n}$ et $\sum_{n=1}^{+\infty} \frac{\sin(n\theta)}{n}$, et préciser leur valeur.