Exercice 1. (**) Soit $(A_n)_{n\in\mathbb{N}}$ une suite d'événements d'un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$. On pose

$$\mathbf{A} = \bigcap_{p \in \mathbb{N}} \bigcup_{n \geqslant p} \mathbf{A}_n.$$

- 1. On suppose que la série $\sum \mathbb{P}(A_n)$ est convergente. Prouver que $\mathbb{P}(A)$ est nul.
- **2.** On suppose que les A_n sont mutuellement indépendants et que la série $\sum \mathbb{P}(A_n)$ est divergente. On veut prouver que $\mathbb{P}(A)$ vaut 1.

Pour tout p dans \mathbb{N} , on introduit l'événement $I_p = \bigcap_{n \geqslant p} \overline{A_n}$.

- **a.** Pour tout $x \ge 0$, prouver l'inégalité $1 x \le e^{-x}$.
- $\mathbf{b.} \text{ Soit } p \in \mathbb{N}. \text{ Soit un entier } r \geqslant p. \text{ Prouver l'inégalité } \mathbb{P}\left(\bigcap_{r \geqslant n \geqslant p} \overline{\mathbf{A}_n}\right) \leqslant \exp\left(-\sum_{r \geqslant n \geqslant p} \mathbb{P}(\mathbf{A}_n)\right).$
- ${\bf c.}$ En déduire que ${\bf I}_p$ est de probabilité nulle.
- d. Conclure. (On a alors démontré le lemme de Borel-Cantelli.)
- **3.** On fixe p dans]0,1[et on considère une suite $(X_n)_{n\geqslant 1}$ de variables aléatoires indépendantes de loi $\mathcal{B}(p)$.

On fixe un entier $k \in \mathbb{N}^*$ ainsi qu'un k-uplet (a_1, \ldots, a_k) dont les termes valent 0 ou 1. Le but de cette question est de montrer que ce motif apparaît presque sûrement dans la suite $(X_n)_{n \ge 1}$.

Pour tout $n \in \mathbb{N}^*$, on considère l'événement

$$A_n = \bigcap_{i=1}^k (X_{nk+i} = a_i).$$

- a. Montrer que les A_n sont mutuellement indépendants.
- b. Conclure à l'aide du lemme de Borel-Cantelli.

Exercice 2. Formule de Wald (**)

Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé. Toutes les variables aléatoires de cet exercice sont définies sur cet espace probabilisé.

Soit X une variable aléatoire à valeurs dans \mathbb{N} . On considère une suite $(X_n)_{n\in\mathbb{N}^*}$ de variables aléatoires indépendantes ayant la même loi que X.

Soit N une variable aléatoire à valeurs dans \mathbb{N} , que l'on suppose indépendante des X_n .

Pour tout
$$\omega \in \Omega$$
, on pose $S(\omega) = \sum_{n=1}^{N(\omega)} X_n(\omega)$.

On note en particulier que S prend la valeur 0 lorsque N vaut 0.

- a. Pour tout $k \in \mathbb{N}$, exprimer l'ensemble (S = k) au moyen d'événements faisant intervenir \mathbb{N} et certains \mathbb{X}_n . En déduire que S est une variable aléatoire.
 - **b.** Exprimer la loi de S.
 - **c.** Pour tout $t \in [0,1]$, montrer les égalités

$$\mathbf{G}_{\mathbf{S}}(t) = \sum_{n=0}^{+\infty} \mathbb{P}(\mathbf{N} = n) \mathbf{G}_{\mathbf{S}_n}(t) \quad \text{puis} \quad \mathbf{G}_{\mathbf{S}}(t) = \mathbf{G}_{\mathbf{N}}(\mathbf{G}_{\mathbf{X}}(t)).$$

d. On suppose que N et X sont d'espérance finie. Montrer alors que S est d'espérance finie et exprimer son espérance.

Exercice 3. (**) Soit $f:[0,+\infty[\to]0,+\infty[$ une fonction. On suppose que f est décroissante et qu'elle vérifie la relation

$$\forall (u, v) \in [0, +\infty[^2, \quad f(u+v) = f(u) \times f(v).$$

Le but de cet exercice est de prouver l'identité

$$\forall u \in [0, +\infty[, \quad f(u) = f(1)^u.$$

- **a.** Pour tout $n \in \mathbb{N}$ et tout x dans $[0, +\infty[$, prouver la relation $f(nx) = f(x)^n$.
- **b.** Pour tout $q \in \mathbb{Q}_+$, prouver la relation $f(q) = f(1)^q$.
- c. Conclure.

Problème II — Processus de Poisson (**)

On considère un système mécanique dans lequel surviennent des pannes. On modélise l'occurrence des pannes comme suit. Pour tout t dans $[0, +\infty[$, le nombre de pannes qui se produisent dans l'intervalle temporel [0, t] est une variable aléatoire N_t à valeurs dans \mathbb{N} . On considère que le système est réparé instantanément après chaque panne. On considère donc ici une famille $(N_t)_{n\in[0,+\infty[}$ de variable aléatoires définies sur un même espace probabilisé $(\Omega, \mathscr{A}, \mathbb{P})$. Remarquons que la modélisation impose que pour tout t positif et tout $u \geq t$, la variable aléatoire $N_u - N_t$ soit à valeurs dans \mathbb{N} .

On fait les hypothèses suivantes :

- la variable aléatoire N₀ est égale à 0;
- pour tout t > 0, le nombre $\mathbb{P}(N_t = 0)$ appartient à]0,1[;
- pour tout n dans \mathbb{N} , pour tout (n+1)-uplet (t_0, \ldots, t_n) croissant d'éléments de $[0, +\infty[$, les variables aléatoires $N_{t_0}, N_{t_1} N_{t_0}, \ldots, N_{t_n} N_{t_{n-1}}$ sont mutuellement indépendantes (hypothèse d'accroissements indépendants);
- pour tout couple (s,t) d'éléments de $[0,+\infty[$ soumis à la condition $0 \le s < t$, la variable aléatoire $N_t N_s$ a la même loi que N_{t-s} (hypothèse d'accroissements stationnaires);
- le quotient $\mathbb{P}(N_h > 1)/h$ tend vers 0 quand h tend vers 0 par valeurs strictement positives.
- 1. Pour tout u dans $[0, +\infty[$, on note G_u la fonction génératrice de la variable aléatoire N_u , que l'on définit simplement sur l'intervalle [0, 1] par

$$G_u(s) = \mathbb{E}(s^{N_u}).$$

On fixe s dans [0,1].

- a. Pour tout couple (u, v) d'éléments de $[0, +\infty[$, prouver l'égalité $G_{u+v}(s) = G_u(s)G_v(s)$.
- **b.** Prouver que la fonction $t \mapsto G_t(s)$ est décroissante sur $[0, +\infty[$.
- **c.** Pour tout $u \ge 0$, prouver que $G_u(s)$ est strictement positif. On pose alors $\theta(s) = -\ln(G_1(s))$.
- **d.** Pour tout u dans $[0, +\infty[$, prouver l'égalité $G_u(s) = e^{-u\theta(s)}$.
- e. En déduire que le quotient $(G_h(s)-1)/h$ tend vers $-\theta(s)$ quand h tend vers 0 par valeurs strictement positives.
- **2.** Pour tout s dans [0,1], prouver que le quotient

$$\frac{1}{h} \sum_{k=2}^{+\infty} \mathbb{P}(N_h = k)(s^k - 1)$$

tend vers 0 quand h tend vers 0 par valeurs strictement positives.

3. En déduire que le quotient $\mathbb{P}(N_h = 1)/h$ possède une limite finie quand h tend vers 0 par valeurs strictement positives. Cette limite est notée α .

De plus, pour tout s dans [0,1], prouver l'égalité $\theta(s)=\alpha(1-s)$.

- **4.** En considérant $G_1(0)$, prouver que α est strictement positif.
- **5.** Pour tout u > 0, prouver que la variable aléatoire N_u suit la loi de Poisson de paramètre αu .