Ondes acoustiques dans les fluides

I Équation de propagation

- 1. Approximation acoustique
- 2. Hypothèse thermodynamique
- 3. Équation de d'Alembert pour p(M, t)
- 4. Valeurs numériques de c
- 5. Validation des hypothèses

II Structure des ondes planes progressives harmoniques

- 1. Onde plane progressive harmonique
- 2. Caractère longitudinale des OPPH, impédance acoustique
- 3. Notation complexe pour les OPPH

III Aspect énergétique

- 1. Localisation et transport de l'énergie acoustique
- 2. Cas d'un OPPH
- 3. Intensité sonore et décibels
- 4. Valeurs numériques

IV Ondes sphériques

- 1. Forme de l'onde sphérique harmonique
- 2. Champ de vitesse
- 3. Puissance rayonnée

V Effet Doppler

- 1. Source au repos et récepteur en mouvement
- 2. Source en mouvement et récepteur au repos

VI Passage d'une interface en incidence normale

- 1. Conditions de passage à l'interface
- 2. Coefficients de réflexion et de transmission
- 3. Réflexion et transmission le l'intensité sonore
- 4. Cas particuliers et applications

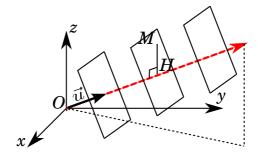


FIGURE 1 – Onde plane ne suivant pas un axe de coordonnées

Localisation et transport de l'énergie en acoustique (admis)

Là où règne l'onde acoustique réside de l'énergie avec la densité volumique

$$e = e_c + u$$
 (J.m⁻³) avec $u = \frac{1}{2}\chi_s p^2$ $e_c = \frac{1}{2}\rho_0 v^2$

Le premier terme représente l'énergie cinétique des particules fluides et le second un accroissement de leur énergie interne lié à leur compression. L'énergie contenue dans un volume \mathcal{V} est $\mathcal{E}=\int_{\mathcal{V}}e\,d\tau$

Le transport de l'énergie est décrit par le vecteur de Poynting $|\vec{R} = p\vec{v}$ (W.m⁻²)

La puissance traversant une surface S est $\mathcal{P} = \int_{S} \vec{R} \cdot d\vec{S}$.

	Intensité sonore	Niveau sonore	pression p_1	vitesse v_1
	$(W.m^{-2})$	(dB)	(Pa)	$(m.s^{-1})$
seuil d'audition	10^{-12}	0	3.10^{-5}	7.10^{-8}
chuchotement	10^{-10}	20	3.10^{-4}	7.10^{-7}
forêt	10^{-8}	40	3.10^{-3}	7.10^{-6}
conversation	10^{-6}	60	3.10^{-2}	7.10^{-5}
cris	10^{-4}	80	3.10^{-1}	7.10^{-4}
marteau piqueur	10^{-2}	100	3	7.10^{-3}
seuil de douleur	1	120	30	7.10^{-2}

Table 1 – Valeurs numériques pour le niveau sonore en dB, la pression acoustique et la vitesse acoustique.

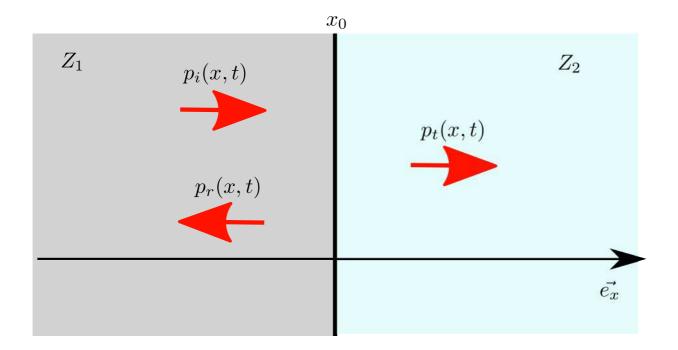


FIGURE 2 – Réflexion et transmission d'une onde sonore à une interface

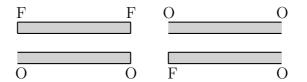


Figure 3 – Modes propres de tuyaux sonores