Exercice 1. (*) Factoriser le polynôme $(X + i)^n - (X - i)^n$ puis exprimer la somme et le produit de ses racines.

Exercice 2. (*) Montrer que tout polynôme réel de degré impair possède au moins une racine réelle.

Exercice 3. (*) Soit $(\alpha_1, \ldots, \alpha_p)$ une liste d'éléments de \mathbb{C} distincts. Soit $(m_1, \ldots, m_p) \in (\mathbb{N}^*)^p$.

On pose
$$P = \prod_{k=1}^{p} (X - \alpha_k)^{m_k}$$
.

Déterminer la décomposition en éléments simples de la fraction rationnelle P'/P.

Exercice 4. (*) Soient a_1, \ldots, a_n des nombres complexes distincts. On pose

$$P = \prod_{k=1}^{n} (X - a_k).$$

Soit $z \in \mathbb{C} \setminus \{a_1, \dots, a_n\}$. Qu'obtient-on en réduisant $\sum_{k=1}^n \frac{1}{z-a_k}$ au même dénominateur?

Exercice 5. (*) On reprend le polynôme P de l'exercice précédent. Soit $r \in [0, n-2]$.

- a. Réduire en éléments simples la fraction rationnelle $\frac{\mathbf{X}^{r+1}}{\mathbf{P}}$.
- **b.** Simplifier la somme $\sum_{k=1}^{n} \frac{(a_k)^r}{P'(a_k)}$.

Exercice 6. (*) Soit un nombre complexe z tel que $|z| \neq 1$. À l'aide de sommes de Riemann, calculer l'intégrale

$$\int_0^{2\pi} \frac{\mathrm{d}t}{z - \mathrm{e}^{\mathrm{i}t}}.$$

Exercice 7. (*) Soit un entier $n \ge 2$. On pose $\omega = e^{i2\pi/n}$.

- a. Reconnaître le polynôme $\prod_{k=1}^{n-1} (\mathbf{X} \omega^k)$.
- **b.** Simplifier la somme $\sum_{k=1}^{n-1} \frac{1}{1-\omega^k}$.

Exercice 8. (*) On note $(E_{i,j})_{1 \leq i,j \leq n}$ la base canonique de $\mathcal{M}_n(\mathbb{R})$.

Pour tout quadruplet (i, j, k, ℓ) d'indices de $[\![1, n]\!]$, montrer l'égalité $\mathbf{E}_{i,j} \cdot \mathbf{E}_{k,\ell} = \delta_{j,k} \, \mathbf{E}_{i,\ell}$.

Exercice 9. (*) On pose $A = \begin{pmatrix} 3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3 \end{pmatrix}$.

- a. Trouver un polynôme annulateur de A de degré aussi petit que possible.
- b. En déduire une expression des puissances de A.
- c. Vérifier que A est inversible et déterminer son inverse.

Exercice 10. (**) On considère l'endomorphisme $f: P \mapsto P - P'$ de $\mathbb{R}_n[X]$.

- a. Trouver un polynôme annulateur de f.
- **b.** En déduire que f est bijectif et déterminer son inverse.

Exercice 11. (*) Résoudre l'équation différentielle $xy'(x) + y(x) = \cos(x)$ sur $]0, +\infty[$.

Exercice 12. (*) Résoudre l'équation différentielle $y' - y \tan(x) = \frac{1}{1 + \cos(x)}$ sur l'intervalle $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$.

Exercice 13. (**) Résoudre le système différentiel suivant

$$\begin{cases} (1+t^2)x'(t) &= tx(t) + y(t) \\ (1+t^2)y'(t) &= -x(t) + ty(t). \end{cases}$$

On utilisera pour cela la fonction z = x + iy.

Exercice 14. (*) Soit $n \in \mathbb{N}$. Trouver les solutions réelles de l'équation différentielle $y''(x) + y'(x) + y(x) = \cos(nx)$ sur \mathbb{R} .

Trouver une solution 2π -périodique? Est-ce la seule?

Exercice 15. (*) Résoudre l'équation différentielle $y''(x) + 4y'(x) + 4y(x) = x^2e^{-2x}$.

Exercice 16. (*)

Pour tout $n \in \mathbb{N}$, on note $I_n = \left[n\pi - \frac{\pi}{2}, n\pi + \frac{\pi}{2}\right]$. On définit la fonction $f: x \mapsto \tan(x) - x$ sur la réunion des I_n .

- 1. Donner le développement limité à l'ordre 3 en 0 de la fonction tangente.
- **2.** Pour tout $n \in \mathbb{N}$, montrer que l'équation f(x) = 0 possède une unique solution dans I_n , notée x_n dans la suite.
- **3.** Montrer que x_n est équivalent à $n\pi$ quand n tend vers $+\infty$.

Pour tout $n \in \mathbb{N}$, on pose $y_n = x_n - n\pi$.

- **4.** Pour tout $n \in \mathbb{N}$, montrer l'égalité $y_n = \operatorname{Arctan}(x_n)$. En déduire la limite de y_n quand n tend vers $+\infty$.
- **5.** Montrer que tan $(y_n \frac{\pi}{2})$ équivaut à $y_n \frac{\pi}{2}$ quand n tend vers $+\infty$.
- **6.** En déduire un développement asymptotique de la forme $y_n = \frac{\pi}{2} + \frac{a}{n} + o\left(\frac{1}{n}\right)$.
- 7. Obtenir un développement asymptotique de la forme $y_n = \frac{\pi}{2} + \frac{a}{n} + \frac{b}{n^2} + o\left(\frac{1}{n^2}\right)$.

Exercice 17. (*) On définit une fonction f de \mathbb{R} dans \mathbb{R} par f(0) = 0 et

$$f(x) = \frac{1}{e^x - 1} - \frac{1}{x}$$
 si $x \neq 0$.

- **a.** Vérifier que la fonction f est continue en 0.
- **b.** Montrer que f est de classe \mathcal{C}^1 sur \mathbb{R} .

Exercice 18. (**) Soit $m \in \mathbb{N}^*$. En calculant de deux façons différentes le développement limité à l'ordre m en 0 de la fonction $x \mapsto (e^x - 1)^m$, montrer l'égalité

$$\sum_{k=1}^{m} (-1)^{m-k} {m \choose k} k^j = \begin{cases} 0 & \text{si } j \in [0, m-1], \\ m! & \text{si } j = m. \end{cases}$$

Exercice 19. (*) Pour tout $n \in \mathbb{N}$, on pose $u_n = \sqrt{n} - 2\sqrt{n+1} + \sqrt{n+2}$.

Vérifier que $u_n = \mathcal{O}_{n \to +\infty} \left(\frac{1}{n^{3/2}}\right)$. Pourquoi est-ce intéressant?